首页> 外文会议>Multiscale mechanobiology of bone remodeling and adaptation >Functional Adaptation of Bone: The Mechanostat and Beyond
【24h】

Functional Adaptation of Bone: The Mechanostat and Beyond

机译:骨骼的功能适应性:稳压器及其他

获取原文

摘要

The conceptual model of the mechanostat proposed by Harold Frost in 1983 is among the most significant contributions to musculoskeletal research today. This model states that bone and other musculoskeletal tissues including cartilage, tendon and muscle respond to habitual exercise/loading and that changes in the loading environment lead to adequate structural adaptation of (bone) tissue architecture. The analogy with a thermostat clearly indicates presence of a physiological feedback system which is able to adjust bone mass and structure according to the engendered loads. In the bioengineering community, the mechanostat has been mathematically formulated as a feedback algorithm using a set point criterion based on a particular mechanical quantity such as strain, strain energy density among others. As pointed out by Lanyon and Skerry, while it is widely thought that in a single individual, there exists a single mechanostat set point, this view is flawed by the fact that different bones throughout the skeleton require a specific strain magnitude to maintain bone mass. Consequently, different bones respond differently to increases or decreases in loading depending on the sensitivity of the mechanostat. Osteocytes, i.e., cells embedded in the bone matrix are believed to be the major bone cells involved in sensing and transduction of mechanical loads. The purpose of this chapter is to review the concept of the mechanostat and its role in bone pathophysiology. To do this we provide examples of why and how the skeleton responds to complex loading stimuli made up of numerous different parameters including strain magnitude, frequency and rest intervals among others. We describe latest in vivo and ex vivo loading models, which allow exploration of various mechanobiological relations in the mechanostat model utilising controlled mechanical environments. A review of the bone cells and signalling transduction cascades involved in mechanosensation and bone adaptation will also be provided. Furthermore, we will discuss the mechanostat in a clinical context, e.g., how factors such as sex, age, genetic constitution, concomitant disease, nutrient availability, and exposure to drugs all affect bone's response to mechanical loading. Understanding the mechanostat and mechanobiological regulatory factors involved in mechanosensation and desensitisation is essential for our ability to control bone mass based on physiological loading, either directly through different exercise regimens, or by manipulating bone cells in a targeted manner using tailored site and individual specific stimuli including pharmaceuticals.
机译:哈罗德·弗罗斯特(Harold Frost)于1983年提出的机械稳压器的概念模型是当今肌肉骨骼研究最重要的贡献之一。该模型指出,骨骼和其他肌肉骨骼组织(包括软骨,肌腱和肌肉)对惯常的运动/负荷产生反应,并且负荷环境的变化会导致(骨骼)组织结构的适当结构适应。与恒温器的类比清楚地表明存在生理反馈系统,该生理反馈系统能够根据产生的负荷来调节骨量和结构。在生物工程界,基于设定的标准,基于特定的机械量(例如应变,应变能密度),将机械稳压器作为反馈算法进行了数学公式化。正如Lanyon和Skerry所指出的那样,尽管人们普遍认为一个人存在一个单一的恒压器设定点,但这种观点存在缺陷,因为整个骨骼中的不同骨骼需要特定的应变幅度来维持骨量。因此,取决于机械平衡器的灵敏度,不同的骨骼对负荷增加或减少的反应不同。骨细胞,即包埋在骨基质中的细胞被认为是涉及机械负荷感测和转导的主要骨细胞。本章的目的是回顾机械稳压器的概念及其在骨骼病理生理学中的作用。为此,我们提供了一些示例,说明骨骼为何以及如何响应复杂的负载刺激,这些刺激由众多不同的参数组成,包括应变幅度,频率和静止间隔等。我们描述了最新的体内和离体负荷模型,这些模型允许利用受控的机械环境探索机械稳压器模型中的各种机械生物学关系。还将提供有关机械感觉和骨骼适应的骨细胞和信号转导级联的综述。此外,我们将在临床环境中讨论机械稳压器,例如性别,年龄,遗传构成,伴随疾病,营养物质可利用性和药物暴露等因素如何影响骨骼对机械负荷的反应。了解机械感觉和脱敏涉及的机械调节器和力学生物学调节因素对于我们基于生理负荷控制骨量的能力至关重要,可以直接通过不同的运动方案,也可以使用定制的部位和个体特异性刺激以靶向方式操纵骨细胞,包括药品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号