首页> 外文会议>Monitoring, simulation, prevention and remediation of dense and debris flows IV >Hot pyroclastic deposit as lahar resistor: a case study of Gendol River after the Mt. Merapi 2010 eruption
【24h】

Hot pyroclastic deposit as lahar resistor: a case study of Gendol River after the Mt. Merapi 2010 eruption

机译:热火山碎屑沉积物作为抗拉尔电阻:以山后的金多尔河为例。默拉皮2010爆发

获取原文
获取原文并翻译 | 示例

摘要

The year 2010 left unforgettable memories for Indonesian people because of the Mega Eruption of Mt. Merapi, which was predicted as the biggest eruption since 1870. Lahar became a dangerous secondary hazard around the Mt. Merapi watershed. The lahar event record until February 2011 in Gendol Watershed showed less instances of lahar occurrence compared with other areas, such as River Putih WS (>10 events), River Apu WS (>5 events), etc. This paper provides literature analysis, stratigraphy study analysis, and also temperature measurement reports, in association with lahar triggered factors in the Gendol Watershed. Previous stratigraphy survey data on Gendol River (Newhall et ai, Journal of Volcanology and Geothermal Research, 2000) shows that the pyroclastic deposit material allows water infiltration because of its porosity. The conditions of a deep clay (impermeable) layer and no water table found up to ±1 lm depth support rain water infiltration. The post eruption pyroclastic deposit is still at a high temperature (±105°C), which causes some infiltrated water to be evaporated. Less runoff will promote a smaller amount of sediment transport and less risk and lower destructive force of a lahar event. Over a sufficient period, the pyroclastic deposit will be consolidated and compacted as a result of the cementation process of active pyroclastic elements (solidified by chemical bonding). Hot pyroclastic material in the Gendol River after the Mount Merapi Eruption 2010 could have acted as a resistor for lahar. The resist period was ±145 days, from the first eruption until the significant lahar event. The influential resistance factors are thickness, density, porosity, riverbed gradient, rain intensity, and temperature of the pyroclastic deposit. It gives enough time for urgent action (human relocation), environment mitigation, reconstruction, and remediation in the watershed. This fact was the empirical basis for the emergency countermeasure priority rating of several lahar rivers, in a volcanic eruption event.
机译:由于泰山爆发,2010年为印尼人民留下了难忘的回忆。默拉皮火山(Merapi)被认为是自1870年以来最大的火山爆发。默拉皮分水岭。直到2011年2月在Gendol流域的拉哈事件记录显示,与其他地区相比,拉蒂发生的事件要少,例如普提河WS(> 10个事件),阿普河WS(> 5个事件)等。本文提供了文献分析,地层学研究分析以及温度测量报告,以及金多尔流域中的拉哈尔触发因素。以前在热多尔河上进行的地层调查数据(Newhall等,火山与地热研究杂志,2000年)表明,火山碎屑沉积物的孔隙度使水得以渗透。深粘土(不可渗透)层的条件以及未发现高达±1 lm深度的地下水位都支持雨水的渗透。喷发后火山碎屑沉积物仍处于高温下(±105°C),这会使一些渗透水蒸发。较少的径流将促进较少量的沉积物迁移,并减少拉哈尔事件的风险和较低的破坏力。经过足够的时间,由于活性火山碎屑元素的胶结过程(通过化学键固化),火山碎屑沉积物将被固结和压实。在2010年默拉皮火山爆发后,热多尔河中热的火山碎屑物质可能充当了拉哈尔的抵抗力量。从第一次喷发到重大的拉哈事件,抗蚀剂时期为±145天。影响阻力的因素是厚度,密度,孔隙度,河床坡度,降雨强度和热碎屑沉积物的温度。它为流域中的紧急行动(人员搬迁),环境缓解,重建和修复提供了足够的时间。这一事实是在火山爆发事件中对数个拉哈河流域紧急对策优先等级进行评估的经验基础。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号