首页> 外文会议>International Conference on Debris Flow >Hot pyroclastic deposit as lahar resistor: a case study of Gendol River after the Mt. Merapi 2010 eruption
【24h】

Hot pyroclastic deposit as lahar resistor: a case study of Gendol River after the Mt. Merapi 2010 eruption

机译:热情的热覆盖物作为拉哈尔电阻:MT.Merapi 2010 Buluption后的Gendol River

获取原文

摘要

The year 2010 left unforgettable memories for Indonesian people because of the Mega Eruption of Mt. Merapi, which was predicted as the biggest eruption since 1870. Lahar became a dangerous secondary hazard around the Mt. Merapi watershed. The lahar event record until February 2011 in Gendol Watershed showed less instances of lahar occurrence compared with other areas, such as River Putih WS (>10 events), River Apu WS (>5 events), etc. This paper provides literature analysis, stratigraphy study analysis, and also temperature measurement reports, in association with lahar triggered factors in the Gendol Watershed. Previous stratigraphy survey data on Gendol River (Newhall et al, Journal of Volcanology and Geothermal Research, 2000) shows that the pyroclastic deposit material allows water infiltration because of its porosity. The conditions of a deep clay (impermeable) layer and no water table found up to ±11m depth support rain water infiltration. The post eruption pyroclastic deposit is still at a high temperature (±105°C), which causes some infiltrated water to be evaporated. Less runoff will promote a smaller amount of sediment transport and less risk and lower destructive force of a lahar event. Over a sufficient period, the pyroclastic deposit will be consolidated and compacted as a result of the cementation process of active pyroclastic elements (solidified by chemical bonding). Hot pyroclastic material in the Gendol River after the Mount Merapi Eruption 2010 could have acted as a resistor for lahar. The resist period was ±145 days, from the first eruption until the significant lahar event. The influential resistance factors are thickness, density, porosity, riverbed gradient, rain intensity, and temperature of the pyroclastic deposit. It gives enough time for urgent action (human relocation), environment mitigation, reconstruction, and remediation in the watershed. This fact was the empirical basis for the emergency countermeasure priority and Remediation of Dense and Debris Flows IV eruption event.
机译:2010年为印度尼西亚人民留下了令人难忘的回忆,因为MT.Merapi的Mega爆发,这是自1870年以来最大的爆发。拉哈尔在Mt. Merapi流域成为一个危险的中学危险。 Lahar活动记录直到2011年2月,在Gendol流域的情况下,与其他领域相比,拉哈尔的情况较少,例如River Putih Ws(> 10次活动),河流APU WS(> 5个事件)等。本文提供了文献分析,地层研究分析,以及温度测量报告,与Lahar流域中的拉哈尔触发因子相关联。上一篇上面的地层测量数据在林尔河(Newhall等,2000)中的火山学和地热研究Chinocts,2000)表明,Pyroclastic沉积物由于其孔隙率而渗透。深层粘土(不可渗透)层和没有水位的条件,发现雨水渗透达到±11米。后喷发后吡芯弹性沉积仍处于高温(±105°C),这导致一些渗透的水蒸发。少数径流将促进少量沉积物运输和拉哈拉尔赛事的风险较少。在足够的时间内,由于活性吡焦型元素的胶结过程(通过化学键合凝固),可以固结和压实吡芯覆盖物。 Merapi Buluption 2010年山脉河河河河中的热杂波材料可以作为拉哈尔的电阻。抗蚀剂时期为±145天,从第一次喷发到大致的拉哈尔事件。影响抗性因素是厚度,密度,孔隙度,河床梯度,雨强度和热量沉积的温度。它为流域中提供了足够的紧急行动(人类搬迁),环境缓解,重建和修复。这一事实是紧急对策优先考虑和密集和碎片的修复的实证基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号