首页> 外文会议>Modeling of Casting, Welding and Advanced Solidification Processes XI vol.1 >NON-MONOTONE TEMPERATURE BOUNDARY CONDITIONS IN DENDRITIC GROWTH
【24h】

NON-MONOTONE TEMPERATURE BOUNDARY CONDITIONS IN DENDRITIC GROWTH

机译:树突生长的非单调温度边界条件

获取原文
获取原文并翻译 | 示例

摘要

When the Gibbs-Thomson-Herring anisotropic capillary boundary condition is applied at the solid-liquid interface of a crystallite with shape anisotropy, such as a needle crystal or dendrite, the interface can develop periodic non-monotone temperature distributions. This surprising result was discovered recently for the case of a slender ellipsoidal crystallite with its solid-melt interfacial energy parameters chosen equivalent to those for pivalic acid—a crystal exhibiting 4-fold anisotropy of its interfacial energy. An unexpected deep minimum develops in the equilibrium temperature close to the highly curved tip. This minimum results in the tip temperature itself becoming warmer than the adjacent interface, thereby further steepening the local temperature gradient at the tip relative to nearby gradients. Numerical simulations of the solidification dynamics, using a spectrally accurate, two-dimensional boundary integral method, show that a non-monotonic temperature distribution anywhere along the crystal-melt interface leads to localized negative curvatures and, eventually, to periodic oscillations in the temperature and tip shape. Periodic changes in the tip shape and temperature distribution lead to growing protuberances that form side branches. The dynamical process acts as a "limit cycle", stimulating a chain of wave-like disturbances behind the tip that grow sequentially and form the periodic side-branches of a dendrite. What is especially significant about these observations is that perturbations are not needed to "destabilize" the solid-melt interface, and the dendritic pattern evolves in a deterministic manner. Selective amplification of interfacial noise—the conventional explanation of dendrites—does not play an important role in this process, so long as sufficient shape and interfacial energy anisotropy occur together.
机译:当将吉布斯-汤姆森-赫林各向异性毛细管边界条件应用于针状晶体或枝晶等具有形状各向异性的微晶的固液界面时,该界面会形成周期性的非单调温度分布。最近,对于细长的椭圆形微晶的情况发现了这一令人惊讶的结果,它的固态熔体界面能参数选择为新戊酸,即晶体的界面能各向异性为4倍。在接近高度弯曲的尖端的平衡温度中出现了意想不到的深最小值。该最小值导致尖端温度本身变得比相邻的界面更热,从而进一步使尖端处的局部温度梯度相对于附近的梯度变陡。使用光谱精确的二维边界积分方法对凝固动力学进行数值模拟,结果表明,沿晶体熔体界面的任何地方的非单调温度分布都会导致局部负曲率,并最终导致温度和温度的周期性波动。尖端形状。尖端形状和温度分布的周期性变化导致形成侧支的突起不断增长。动力学过程充当“极限循环”,刺激尖端后面的一系列波状扰动,这些扰动依次增长并形成枝晶的周期性侧枝。这些观察特别重要的是,不需要“扰动”来使固体-熔体界面“不稳定”,并且树枝状图案以确定的方式演化。界面噪声的选择性放大(树突的常规解释)在此过程中不起作用,只要同时出现足够的形状和界面能各向异性即可。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号