首页> 外文会议>Multiphoton Microscopy in the Biomedical Sciences XIX >Fluorescence lifetime imaging with a single-photon SPAD array using long overlapping gates: an experimental and theoretical study
【24h】

Fluorescence lifetime imaging with a single-photon SPAD array using long overlapping gates: an experimental and theoretical study

机译:使用长重叠门的单光子SPAD阵列的荧光寿命成像:实验和理论研究

获取原文
获取原文并翻译 | 示例

摘要

Developing large arrays of single-photon avalanche diodes (SPADs) with on-chip time-correlated single-photon counting(TCSPC) capabilities continues to be a difficult task due to stringent silicon real estate constraints, high data rates andsystem complexity. As an alternative to TCSPC, time-gated architectures have been proposed, where the numbers ofphotons detected within different time gates are used as a replacement to the usual time-resolved luminescence decay.However, because of technological limitations, the minimum gate length implement is on the order of nanoseconds,longer than most fluorophore lifetimes of interest. However, recent FLIM measurements have shown that it is mainly thegate step and rise/fall time, rather than its length, which determine lifetime resolution. In addition, the large number ofphotons captured by longer gates results in higher SNR. In this paper, we study the effects of using long, overlappinggates on lifetime extraction by phasor analysis, using a recently developed 512×512 time-gated SPAD array. Theexperiments used Cy3B, Rhodamine 6G and Atto550 dyes as test samples. The gate window length was varied between11.3 ns and 23 ns while the gate step was varied between 17.86 ps and 3 ns. We validated the results with a standardTCSPC setup and investigated the case of multi-exponential samples through simulations. Results indicate that lifetimeextraction is not degraded by the use of longer gates, nor is the ability to resolve multi-exponential decays.
机译:由于严格的硅空间限制,高数据速率和\\开发具有片上时间相关的单光子计数\ r \ n(TCSPC)功能的大型单光子雪崩二极管(SPAD)阵列仍然是一项艰巨的任务。系统复杂度。作为TCSPC的替代方案,已提出了时间门控架构,其中在不同时间门内检测到的\ r \ n光子数量被用来替代通常的时间分辨的发光衰减。\ r \ n但是,由于技术限制,最小栅极长度工具的数量级为纳秒,比大多数目标荧光团寿命更长。但是,最近的FLIM测量表明,决定寿命分辨率的主要因素是门的阶跃和上升/下降时间,而不是其长度。另外,较长的门捕获的大量\ r \ n光子会导致较高的SNR。在本文中,我们使用最近开发的512×512时间门控SPAD阵列,通过相量分析研究了使用长的,重叠的碎片对寿命提取的影响。实验使用Cy3B,罗丹明6G和Atto550染料作为测试样品。栅极窗口长度在\ r \ n11.3 ns和23 ns之间变化,而栅极步长在17.86 ps和3 ns之间变化。我们使用标准\ r \ nTCSPC设置验证了结果,并通过仿真研究了多指数样本的情况。结果表明,使用更长的门不会降低寿命\ r \ nextraction,也不会解决多指数衰减的能力。

著录项

  • 来源
  • 会议地点
  • 作者单位

    AQUA Laboratory, EPFL, 71b Rue de la Maladière, Neuchâtel, Switzerland a.ardelean@epfl.ch;

    AQUA Laboratory, EPFL, 71b Rue de la Maladière, Neuchâtel, Switzerland;

    Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East , Los Angeles, USA;

    AQUA Laboratory, EPFL, 71b Rue de la Maladière, Neuchâtel, Switzerland;

    AQUA Laboratory, EPFL, 71b Rue de la Maladière, Neuchâtel, Switzerland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号