首页> 外文会议>Microfluidics, BioMEMS, and Medical Microsystems IV >High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters
【24h】

High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters

机译:高精度微铣削,用于低成本制造金属模具母盘

获取原文
获取原文并翻译 | 示例

摘要

High-precision micromilling was employed as a cost-efficient method of preparation of metal masters useful in fabrication of polymer microfluidic devices through replication techniques. In first application, a brass mold master was used for hot embossing of microchip electrophoresis devices in poly(methyl methacrylate) (PMMA). The sidewalls of the milled microstructures were characterized by a maximum average roughness (R_a) of 110 nm and mean peak height (R_(pm)) of 320 nm. SEM imaging showed a transfer of the sidewall roughness from the molding tool to the polymer microdevice. The electroosmotic flow (EOF) values for micromilled-based microchannels were comparable to ones in the LiGA-prepared devices (sidewall R_a = 20 nm) with values of ca. 3.7 x 10~(-4) cm~2V~(-1)s~(-1) (20 mM TBE buffer, pH 8.2), indicating insignificant effects of wall roughness on the bulk EOF. Numerical simulations showed that the additional volumes present in an injection cross due to curvature of the corners produced by micromilling lead to elongated sample plugs. PMMA microchip electrophoresis devices were used for a separation of pUC19 Sau3AI double-stranded DNA. The plate numbers achieved exceeded 1 million m~(-1) and were comparable to the plate numbers for the LiGA-based devices of similar geometry. In second application brass master was used as tool for preparation of poly(dimethylsiloxane) PDMS stencils for patterning of DNA microarrays onto a PMMA substrate. Four zip code probes immobilized onto the PMMA surface directed allele-specic ligation products containing mutations in the KRAS2 gene (12.2D, 12.2A, 12.2V, and 13.4D) to the appropriate address of a universal array with minimal amounts of cross-hybridization or misligation.
机译:高精度微铣削是一种经济高效的金属母版制备方法,可用于通过复制技术制造聚合物微流体装置。在第一个应用中,使用黄铜模具母版对聚甲基丙烯酸甲酯(PMMA)中的微芯片电泳设备进行热压花。研磨的微结构的侧壁的特征在于最大平均粗糙度(R_a)为110 nm,平均峰高(R_(pm))为320 nm。 SEM成像显示侧壁粗糙度从成型工具转移到聚合物微器件。基于微铣削的微通道的电渗流(EOF)值与LiGA制备的设备(侧壁R_a = 20 nm)中的电渗流值近似,约为ca。 3.7 x 10〜(-4)cm〜2V〜(-1)s〜(-1)(20 mM TBE缓冲液,pH 8.2),表明壁粗糙度对整体EOF的影响不明显。数值模拟表明,由于微铣削产生的拐角曲率,注射十字中存在的额外体积会导致样品塞伸长。使用PMMA微芯片电泳设备分离pUC19 Sau3AI双链DNA。所获得的板数超过了100万m-1(-1),与具有相似几何形状的基于LiGA的器件的板数相当。在第二个应用中,黄铜母盘用作制备聚(二甲基硅氧烷)PDMS模板的工具,以将DNA微阵列图案化到PMMA基板上。固定在PMMA表面的四个邮政编码探针将包含KRAS2基因突变(12.2D,12.2A,12.2V和13.4D)的等位基因特异性连接产物导向具有最小交叉杂交量的通用阵列的适当地址或流连忘返。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号