【24h】

Nano Sensor Design for Hydrogen Detection

机译:用于氢气检测的纳米传感器设计

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present the design parameters and optimization of the nanoscale gap interdigitated electrodes (IDEs) for hydrogen gas sensing. In order to extract important design parameters and understand the sensor performance, numerical analysis has been carried out for calculating the electric potential, electrical field and surface charge distribution on the IDEs. The results show that the strength of the electrical field drops with the increase in distance from IDEs depending on the gap spacing and finger width of the electrodes. Based on the sensing mechanism of our sensor, the current distribution inside the sensing film is calculated showing that the thin sensing film could result in fast response due to the uniform electrical field distribution. Effects of the gap spacing and width on the sensing performance were investigated numerically. The optimized design of IDEs with 50 nm in gap and 1,000 nm in width shows that the change of electrical field in the thickness direction is much reduced for a given 120 nm-thick sensing layer on top of the IDEs. It is expected that this design responds better to hydrogen induced conductivity change on top surface and leads to shorter response time.
机译:在这项工作中,我们介绍了用于氢气传感的纳米级间隙叉指电极(IDE)的设计参数和优化。为了提取重要的设计参数并了解传感器性能,已进行了数值分析,以计算IDE上的电势,电场和表面电荷分布。结果表明,电场强度随着距IDE距离的增加而下降,这取决于电极的间隙间距和手指宽度。根据我们传感器的感应机制,计算出感应膜内部的电流分布,这表明薄的感应膜由于电场分布均匀而可能导致快速响应。数值研究了间隙间距和宽度对传感性能的影响。具有50 nm间隙和1000 nm宽度的IDE的优化设计表明,对于IDE顶部给定的120 nm厚度的感应层,厚度方向上的电场变化将大大减少。预期该设计对氢诱导的顶表面电导率变化有更好的响应,并缩短响应时间。

著录项

  • 来源
  • 会议地点 Orlando FL(US)
  • 作者单位

    Department of Mechanical, Materials and Aerospace, University of Central Florida 4000 Central Florida Blvd., Orlando, FL USA 32816;

    Department of Mechanical, Materials and Aerospace, University of Central Florida 4000 Central Florida Blvd., Orlando, FL USA 32816 Surface Engineering and Nanotechnology Facility (SNF), Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center, University of Central Florida 4000 Central Florida Blvd., Orlando, FL USA 32816;

    Department of Mechanical, Materials and Aerospace, University of Central Florida 4000 Central Florida Blvd., Orlando, FL USA 32816 Surface Engineering and Nanotechnology Facility (SNF), Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center, University of Central Florida;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nano sensor; design; hydrogen detection; MEMS/NEMS;

    机译:纳米传感器设计;氢检测MEMS / NEMS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号