首页> 外文会议>Micro- and nanotechnology sensors, systems, and applications >DESIGN AND FABRICATION OF MICROFLAP ACTUATORS FOR STEERING OF MICRO AIR VEHICLES
【24h】

DESIGN AND FABRICATION OF MICROFLAP ACTUATORS FOR STEERING OF MICRO AIR VEHICLES

机译:微型汽车转向微动执行器的设计与制造

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the design, analysis, and fabrication of an array of microflap actuators that can produce a substantial aerodynamic force for course corrections of Micro Air Vehicles (MAVs) and low speed projectiles. In the past, several actuation principles, including microjet, magnetic and bubble actuators, and flapping wings have been proposed, and had varying degrees of success. In this paper, we discuss the benefits and drawbacks of past attempts, and the technology that can be used to address the microflap steering problem. We propose a hybrid microflap actuation scheme that combines two types of actuators including: 1) a MEMS fabricated "active" microactuator connected to a microflap, and 2) a "passive" fluidic channel system that harvests the potential energy in the high pressure field on the leading edge of the MAV or high speed projectile to achieve a desired deflection. An array of microflap actuators was prototyped using silicon MEMS fabrication and microassembly. A Silicon On Insulator (SOI) wafer with 100 micron thick device layer was used to as a substrate material to fabricate microflap structures with springs. Front and back side DRIE process was used to etch and release the microstructures including microflaps. Then, the microactuator was assembled on top of the microflap. The static and dynamic behaviors of a microflap were measured using a laser displacement sensor and were compared to the analytic model. In the near future, a prototyped microflap will be tested inside of a wind tunnel to measure the lift and drag at various air speeds.
机译:本文介绍了微型襟翼致动器阵列的设计,分析和制造,这些微型襟翼致动器可以产生很大的空气动力,从而可以对微型飞行器(MAV)和低速弹丸进行航向校正。在过去,已经提出了几种致动原理,包括微喷射,磁性和气泡致动器以及襟翼,并且取得了不同程度的成功。在本文中,我们讨论了过去尝试的优缺点,以及可用于解决微瓣转向问题的技术。我们提出了一种混合型微瓣致动方案,该方案结合了两种类型的致动器,包括:1)由MEMS制造的连接到微瓣的“主动”微致动器,以及2)“被动”流体通道系统,该系统在高压场上收集势能。 MAV或高速弹丸的前缘,以实现所需的偏转。使用硅MEMS的制造和微装配对微瓣执行器阵列进行了原型设计。具有100微米厚器件层的绝缘体上硅(SOI)晶圆被用作衬底材料,以制造带有弹簧的微瓣结构。正面和背面DRIE工艺用于蚀刻和释放包括微瓣的微结构。然后,将微致动器组装在微瓣的顶部。使用激光位移传感器测量微瓣的静态和动态行为,并将其与分析模型进行比较。在不久的将来,原型微风门将在风洞内进行测试,以测量各种风速下的升力和阻力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号