【24h】

Improved PTASs for Convex Barrier Coverage

机译:改进了凸屏障覆盖的PTASS

获取原文

摘要

Let R be a connected closed region in the plane and let S be a set of n points (representing mobile sensors) in the interior of R. We think of R's boundary as a barrier which needs to be monitored. This gives rise to the barrier coverage problem, where one needs to move the sensors to the boundary of R, so that every point on the boundary is covered by one of the sensors. We focus on the variant of the problem where the goal is to place the sensors on R's boundary, such that the distance (along R's boundary) between any two adjacent sensors is equal to R's perimeter divided by n and the sum of the distances traveled by the sensors is minimum. In this paper, we consider the cases where R is either a circle or a convex polygon. We present a PTAS for the circle case and explain how to overcome the main difficulties that arise when trying to adapt it to the convex polygon case. Our PTASs are significantly faster than the previous ones due to Bhattacharya et al. [4]. Moreover, our PTASs require efficient solutions to problems, which, as we observe, are equivalent to the circle-restricted and line-restricted Weber problems. Thus, we also devise efficient PTASs for these Weber problems.
机译:设R是平面中的连接闭合区域,让S在R的内部成为一组N个点(代表移动传感器)。我们认为R的边界作为需要被监视的屏障。这引起了阻挡覆盖问题,其中需要将传感器移动到R的边界,从而覆盖边界上的每个点被其中一个传感器覆盖。我们专注于将传感器放置在R的边界上的问题的变型,使得任意两个相邻传感器之间的距离(沿R的边界)等于R的周边除以n和行进的距离之和传感器最小。在本文中,我们考虑了R是圆或凸多边形的情况。我们为圈子案例提出了一个PTA,并解释了如何克服试图将其调整到凸多边形案件时出现的主要困难。由于Bhattacharya等人,我们的PTASS比以前的人更快。 [4]。此外,我们的PTASS需要有效的问题解决问题,因为我们观察到,相当于圈限制和线条限制的韦伯问题。因此,我们也为这些韦伯问题设计了高效的PTASS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号