首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >MULTIPHYSICS NUMERICAL INVESTIGATION OF AN AERONAUTICAL LEAN BURN COMBUSTOR
【24h】

MULTIPHYSICS NUMERICAL INVESTIGATION OF AN AERONAUTICAL LEAN BURN COMBUSTOR

机译:航空瘦燃烧燃烧器的多体数值研究

获取原文

摘要

The importance of the combustion chamber has been underestimated for years by aeroengine manufacturers that focused their research efforts mainly on other components, such as compressor and turbine, to improve the engine performance. Nevertheless, stricter requirements on pollutant emissions have contributed to increase the interest on combustor development and, nowadays, new design concepts are widely investigated. To meet the goals of ACARE FlightPath 2050 and future ICAO-CAEP standards one of the most promising results is provided by the Lean Burn technology. As this combustion mode is based on a lean Primary Zone, the air devoted to liner cooling is restricted and advanced cooling systems must be exploited to obtain higher overall effectiveness. The pushing trends of Turbine Inlet Temperature and Overall Pressure Ratio in modern aeroengine are not supported enough by the development of materials, thus making the research branch of liner cooling increasingly relevant. In this context, Computational Fluid Dynamics is able to predict the flow field and the complex interactions between the involved phenomena, supporting the design of modern Lean Burn combustors in all stages of the process. RANS approaches provide a solution of the problem with low computational cost, but can lack in accuracy when the flow unsteadiness dominates the fluid dynamics and the strong interactions, as in aeroengine combustors. Even if steady simulations can be easily employed in the preliminary design, their inaccuracy can be detrimental for an optimized combustor design and Scale-Resolving methods should be preferred, at least, in the final stages. Unfortunately, having to deal with a multiphysics problem as Conjugate Heat Transfer (CHT) in presence of radiation, these simulations can become computationally expensive and some numerical treatments are required to handle the wide range of time and space scales in an unsteady framework. In the present work the metal temperature distribution is investigated from a numerical perspective on a full annular aeronautical lean burn combustor operated at real conditions. For this purpose, the U-THERM3D multiphysics tool was developed in ANSYS Fluent and applied on the test case. The results are compared against RANS and experimental data to assess the tool capability to handle the CHT problem in the context of scale-resolving simulations.
机译:燃烧室的重要性多年来由航空发动机制造商低估,主要集中在其研究努力,主要是在压缩机和涡轮机等其他部件,以提高发动机性能。尽管如此,对污染物排放的更严格的要求有助于增加燃烧器开发的利益,现在,新的设计概念被广泛调查。为了满足Acare飞行路径的目标2050和未来的ICAO-CAEP标准,最有前途的结果是精益燃烧技术提供的。由于这种燃烧模式基于贫初级区域,因此致力于衬垫冷却的空气受到限制,并且必须利用先进的冷却系统以获得更高的整体效率。材料的推动趋势和现代航空发动机中的总压力比的推动趋势不足以推动材料的发展,从而使衬里冷却的研究分支越来越相关。在这种情况下,计算流体动力学能够预测流动场和所涉及的现象之间的复杂相互作用,支持在该过程的所有阶段中的现代瘦燃烧燃烧器的设计。 RAN方法提供了低计算成本的问题解决方案,但是当流动不稳定性主导流体动力学和强烈的相互作用时,可以缺乏准确性,如空疗燃烧器。即使在初步设计中可以容易地使用稳定的仿真,它们的不准确性也可能对优化的燃烧器设计有害,并且应至少在最终阶段中优先考虑尺度分辨方法。遗憾的是,必须在存在辐射存在中以缀合的传热(CHT)处理多体验问题,这些模拟可以变得计算昂贵,需要一些数值处理来处理不稳定框架中的广泛时间和空间尺度。在本工作中,从在真实条件下操作的全环形航空稀燃燃烧器上的数值透视研究了金属温度分布。为此目的,U-Therm3D MultiphySics工具是在SNSYS流利的ANSYS中开发的,并应用于测试用例。将结果与RAN和实验数据进行比较,以评估在规模解决模拟的背景下处理CHT问题的工具能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号