首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >MULTIPHYSICS NUMERICAL INVESTIGATION OF AN AERONAUTICAL LEAN BURN COMBUSTOR
【24h】

MULTIPHYSICS NUMERICAL INVESTIGATION OF AN AERONAUTICAL LEAN BURN COMBUSTOR

机译:航空稀燃燃烧室的多物理数值研究。

获取原文

摘要

The importance of the combustion chamber has been underestimated for years by aeroengine manufacturers that focused their research efforts mainly on other components, such as compressor and turbine, to improve the engine performance. Nevertheless, stricter requirements on pollutant emissions have contributed to increase the interest on combustor development and, nowadays, new design concepts are widely investigated. To meet the goals of ACARE FlightPath 2050 and future ICAO-CAEP standards one of the most promising results is provided by the Lean Burn technology. As this combustion mode is based on a lean Primary Zone, the air devoted to liner cooling is restricted and advanced cooling systems must be exploited to obtain higher overall effectiveness. The pushing trends of Turbine Inlet Temperature and Overall Pressure Ratio in modern aeroengine are not supported enough by the development of materials, thus making the research branch of liner cooling increasingly relevant. In this context, Computational Fluid Dynamics is able to predict the flow field and the complex interactions between the involved phenomena, supporting the design of modern Lean Burn combustors in all stages of the process. RANS approaches provide a solution of the problem with low computational cost, but can lack in accuracy when the flow unsteadiness dominates the fluid dynamics and the strong interactions, as in aeroengine combustors. Even if steady simulations can be easily employed in the preliminary design, their inaccuracy can be detrimental for an optimized combustor design and Scale-Resolving methods should be preferred, at least, in the final stages. Unfortunately, having to deal with a multiphysics problem as Conjugate Heat Transfer (CHT) in presence of radiation, these simulations can become computationally expensive and some numerical treatments are required to handle the wide range of time and space scales in an unsteady framework. In the present work the metal temperature distribution is investigated from a numerical perspective on a full annular aeronautical lean burn combustor operated at real conditions. For this purpose, the U-THERM3D multiphysics tool was developed in ANSYS Fluent and applied on the test case. The results are compared against RANS and experimental data to assess the tool capability to handle the CHT problem in the context of scale-resolving simulations.
机译:多年来,航空发动机制造商一直低估了燃烧室的重要性,他们的研究工作主要集中在其他部件上,例如压缩机和涡轮,以提高发动机性能。然而,对污染物排放的更严格要求促使人们对燃烧室的发展产生了兴趣,如今,新的设计理念得到了广泛的研究。为了达到ACARE FlightPath 2050和未来的ICAO-CAEP标准的目标,精益燃烧技术是最有希望的成果之一。由于这种燃烧模式基于稀薄的主要区域,因此限制了用于衬套冷却的空气,必须开发先进的冷却系统以获得更高的整体效率。材料的发展不足以支持现代航空发动机中涡轮进气温度和总压比的推动趋势,因此使得衬套冷却的研究分支变得越来越重要。在这种情况下,计算流体动力学能够预测流场以及所涉及现象之间的复杂相互作用,从而在该过程的所有阶段都支持现代精益燃烧器的设计。 RANS方法以较低的计算成本提供了该问题的解决方案,但是,如在航空发动机燃烧器中那样,当流动不稳定主导流体动力学和强相互作用时,RANS方法可能会缺乏准确性。即使可以在初步设计中轻松使用稳定的模拟,但其误差也会对优化的燃烧室设计造成不利影响,至少在最终阶段应优先采用比例缩放方法。不幸的是,必须在辐射存在下处理诸如共轭传热(CHT)的多物理场问题,这些模拟可能变得计算量大,并且需要一些数值处理才能在不稳定的框架中处理大范围的时间和空间尺度。在本工作中,从数字角度研究了在实际条件下运行的全环形航空稀薄燃烧燃烧器的金属温度分布。为此,在ANSYS Fluent中开发了U-THERM3D多物理场工具并将其应用于测试用例。将结果与RANS和实验数据进行比较,以评估在规模解析模拟的情况下处理CHT问题的工具功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号