首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >NUMERICAL INVESTIGATION ON THE EFFECT OF ROTATION AND HOLES ARRANGEMENT IN COLD BRIDGE TYPE IMPINGEMENT COOLING SYSTEMS
【24h】

NUMERICAL INVESTIGATION ON THE EFFECT OF ROTATION AND HOLES ARRANGEMENT IN COLD BRIDGE TYPE IMPINGEMENT COOLING SYSTEMS

机译:冷桥型冲击冷却系统旋转和孔布置效果的数值研究

获取原文

摘要

This work presents the results of a numerical analysis performed on a gas turbine leading edge cooling system. The investigation was carried out in order to provide a detailed interpretation of the outcomes of a parallel experimental campaign. The cooling geometry consists of a cold bridge type impingement system: a radial channel feeds an array of holes, which in turn generate impingement jets cooling down the inner side of the leading edge surface. Coolant is extracted by five rows of holes, replicating film cooling and showerhead systems. Two impingement geometries were considered, presenting different holes arrangements and diameters but sharing the same overall passage area, in order to highlight the effect of different coolant distributions inside the leading edge cavity. For both geometries a single test point was investigated in static and rotating conditions, with an equivalent slot Reynolds number of around 8200 and feeding conditions corresponding to the midspan radial section of the blade. Both steady RANS approach and Scale Adaptive Simulation (SAS) were tested. Due to the strong unsteadiness of the flow field, the latter proved to be superior: as a consequence, SAS approach was adopted to study every case. A fairly good agreement was observed between the measured and computed heat transfer distributions, which allowed to exploit the numerical results to get a detailed description of the phenomena associated with the different cases. Results reveal that the two holes arrangements lead to strongly different heat transfer patterns, related to the specific flow phenomena occurring inside the leading edge cavity and to the mutual influence of the various system features. Rotational effects also appear to interact with the supply condition, altering the jet lateral spreading and the overall heat transfer performance.
机译:这项工作提出的数值分析的结果上的燃气涡轮前缘冷却系统进行的。该调查是为了提供一个平行实验活动的成果进行详细解读进行。该冷却的几何形状包括一个冷桥型冲击系统的:一个径向通道馈送孔,其又产生冲击射流冷却前缘表面的内侧的阵列。冷却剂通过孔的五排萃取,复制薄膜冷却和喷淋系统。两个冲击几何形状被认为是,呈现不同的孔布置和直径,但共享相同的总通道面积,以突出不同的冷却剂分布的前缘腔内部的效果。对于这两种几何形状的单个测试点是在静态和旋转条件的调查,对应于叶片的中跨部分径向围绕8200和进给条件的等效槽雷诺数。这两种稳定RANS接近和规模自适应模拟(SAS)进行了测试。由于流场的强忽快忽慢,后者被证明是优越的:因此,SAS的做法是通过研究每一个案件。该测量和计算的热传递分布,这使得利用该数值结果得到的与不同的情况有关的现象的详细说明之间观察到相当一致。结果表明,该两个孔安排导致强烈不同的热转移图案,与前缘腔内部,并且各系统的功能的相互影响产生的特定流动现象。旋转效应似乎也与供给条件相互作用,改变横向扩展射流和整体传热性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号