首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >NUMERICAL INVESTIGATION ON THE EFFECT OF ROTATION AND HOLES ARRANGEMENT IN COLD BRIDGE TYPE IMPINGEMENT COOLING SYSTEMS
【24h】

NUMERICAL INVESTIGATION ON THE EFFECT OF ROTATION AND HOLES ARRANGEMENT IN COLD BRIDGE TYPE IMPINGEMENT COOLING SYSTEMS

机译:冷桥式冲击冷却系统中旋转和孔布置影响的数值研究

获取原文

摘要

This work presents the results of a numerical analysis performed on a gas turbine leading edge cooling system. The investigation was carried out in order to provide a detailed interpretation of the outcomes of a parallel experimental campaign. The cooling geometry consists of a cold bridge type impingement system: a radial channel feeds an array of holes, which in turn generate impingement jets cooling down the inner side of the leading edge surface. Coolant is extracted by five rows of holes, replicating film cooling and showerhead systems. Two impingement geometries were considered, presenting different holes arrangements and diameters but sharing the same overall passage area, in order to highlight the effect of different coolant distributions inside the leading edge cavity. For both geometries a single test point was investigated in static and rotating conditions, with an equivalent slot Reynolds number of around 8200 and feeding conditions corresponding to the midspan radial section of the blade. Both steady RANS approach and Scale Adaptive Simulation (SAS) were tested. Due to the strong unsteadiness of the flow field, the latter proved to be superior: as a consequence, SAS approach was adopted to study every case. A fairly good agreement was observed between the measured and computed heat transfer distributions, which allowed to exploit the numerical results to get a detailed description of the phenomena associated with the different cases. Results reveal that the two holes arrangements lead to strongly different heat transfer patterns, related to the specific flow phenomena occurring inside the leading edge cavity and to the mutual influence of the various system features. Rotational effects also appear to interact with the supply condition, altering the jet lateral spreading and the overall heat transfer performance.
机译:这项工作介绍了在燃气轮机前缘冷却系统上进行的数值分析的结果。进行调查是为了对并行实验活动的结果提供详细的解释。冷却几何结构由一个冷桥式冲击系统组成:一个径向通道供入一系列孔,这些孔又会产生冲击射流,从而冷却前缘表面的内侧。通过五排孔抽取冷却液,从而复制了薄膜冷却和喷头系统。考虑了两个碰撞几何形状,它们具有不同的孔布置和直径,但共有相同的总通道面积,以突出前缘腔体内不同冷却剂分布的影响。对于这两种几何形状,均在静态和旋转条件下研究了单个测试点,等效槽隙雷诺数约为8200,进给条件对应于叶片的中跨径向截面。测试了稳定的RANS方法和规模自适应仿真(SAS)。由于流场的强烈不稳定性,后者被证明是优越的:因此,采用SAS方法研究每种情况。在测得的传热分布和计算出的传热分布之间观察到相当好的一致性,这允许利用数值结果来获得与不同情况相关的现象的详细描述。结果表明,两个孔的排列导致传热模式有很大不同,这与在前缘腔体内发生的特定流动现象以及各种系统特征的相互影响有关。旋转效应似乎也与供应条件相互作用,从而改变了射流的横向扩散和整体的传热性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号