首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >LOCALIZED BREAKUP INSTABILITIES FOR A LIQUID JET IN CROSSFLOW
【24h】

LOCALIZED BREAKUP INSTABILITIES FOR A LIQUID JET IN CROSSFLOW

机译:跨越液体喷射的本地化分解不稳定性

获取原文

摘要

Liquid fuel jet in Crossflow (LJIC) is significant to the aviation industry since it is a vital technique for atomization. The hydrodynamic instability mechanisms that drive a transverse jet's primary breakup were investigated using modal and traveling wavelength analysis. This study highlights the primary breakup mechanisms for aviation fuel Jet-A. However, the techniques discussed are applicable to any liquid. Mathematical decomposition techniques are known as POD (Proper Orthogonal Decomposition), and MrDMD (Multi-Resolution Dynamic Mode Decomposition) are used together to identify dominant instability flow dynamics associated with the primary breakup mechanism. Implementation of the MrDMD method deconstructs the nonlinear dynamical systems into multiresolution time-scaled components that capture the intermittent coherent structures. The MrDMD, in conjunction with the POD method, is applied to data points taken across the entire spray breakup regimes, which are: enhanced capillary breakup, bag breakup, nultimode breakup, and shear breakup. The dominant frequencies of both breakup regimes are extracted and identified. These coherent structures are classified with an associated time scale and Strouhal number. Characterization of the traveling column and surface wavelengths are conducted and associated with a known instability model. It is found that the Plateau -Rayleigh instability model predicts columns wavelengths similar to wavelengths found in dominant modes associated with a capillary breakup. Rayleigh Taylor's instability model matches well with bag and multimode breakup. Small scale surface wavelengths associated with a shear breakup are correlated to a modified Rayleigh Taylor instability model founded by Wang et al. . Furthermore, an atomization model that predicts the Sauter Mean Diameter associated with the dominant small-scale surface traveling wavelengths is established.
机译:液体燃料射流在十字流(LJIC)上对航空工业具有重要意义,因为它是雾化的重要技术。使用模态和行进波长分析研究驱动横向喷射初级分解的流体动力稳定性机制。本研究突出了航空燃料射流A的主要分手机制。然而,所讨论的技术适用于任何液体。数学分解技术称为POD(适当的正交分解),并且MRDMD(多分辨率动态模式分解)一起使用以识别与主要分子机制相关联的主导不稳定性流动动态。 MRDMD方法的实现将非线性动力系统解构成多分辨率的时间缩放组件,捕获间歇相干结构。与POD方法一起使用的MRDMD应用于整个喷雾分解制度的数据点,这是:增强毛细管分手,袋子分析,Nultimode分类和剪切分解。提取和识别出两种分发制度的主导频率。这些相干结构以相关的时间尺度和Strouhal数分类。传导柱和表面波长的表征与已知的不稳定性模型相关联。发现Plateau-RayleLigh不稳定性模型预测与与毛细管分解相关的主导模式中的波长相似的列波长。 Rayleigh Taylor的不稳定模型与袋子和多模分手相匹配。与剪切分解相关的小刻度表面波长与由Wang等人创立的改进的瑞利泰勒不稳定模型相关。 。此外,建立了预测与主要小规模行驶波长相关的燃露刀平均直径的雾化模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号