首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >Development of ODS Coating for Critical Turbine Components Using DED Additive Manufacturing
【24h】

Development of ODS Coating for Critical Turbine Components Using DED Additive Manufacturing

机译:使用DED添加剂制造的临界涡轮机组件开发ODS涂层

获取原文
获取外文期刊封面目录资料

摘要

The challenge for design and manufacturing of future advanced gas turbine systems is to meet the requirement of increasing turbine inlet temperature (TIT), which is higher than the substrate melting temperature. Increasing high thermal load also causes severe oxidation and corrosion of base alloy in gas turbine. Current approach is coating the inlet turbine blade with thermal barrier coating (TBC) combined with internal cooling channel in the substrate. However, neither the ceramic coating layer nor the metallic bond coat in the TBC system can provide structural loading support to house the internal cooling channels. Development of structural bond coat with embedded cooing channels can be one of the key technologies for future advanced turbine systems. In this research, high temperature protective structural coating on top of a superalloy substrate (popular for making gas turbine component) by additive manufacturing (AM) technique using oxide dispersion strengthening (ODS) powder is presented. A novel combined mechanochemical bonding (MCB) plus ball milling (BM) process is utilized to produce ODS powders suitable for AM applications. AM-processed ODS coating by direct energy deposition (DED) method on MAR-247 substrate were carried out. The ODS coated samples were then subjected to cyclic thermal loadings for over 4000 cycles (each cycle consists of alternating between 45 minutes at 1100 °C and 45 minutes at room temperature). SEM and EDX were applied for oxide formation analyses of the ODS coating at selected thermal cycles. In particular, stability of gamma prime phase in the ODS coating at different thermal cycles is analyzed. Test results revealed a thin continuous durable alumina oxide layer on ODS coating surface after over 4,000 thermal cycles. Test results also showed relatively stable substrate microstructures due to the protective alumina surface oxide layer and strong bonding at ODS coating/substrate interface is maintained. Oxidation weight gain of a AM-processed ODS sample is conducted and the results compared favorably with those literature available alumina forming alloys (AFA) under similar testing conditions.
机译:设计和制造未来先进的燃气轮机系统的挑战是满足增加涡轮机入口温度(山雀)的要求,该温度高于基板熔化温度。增加高热负荷也会导致燃气轮机中的基础合金的严重氧化和腐蚀。电流方法是将热障涂层(TBC)的入口涡轮机叶片与基板中的内部冷却通道组合。然而,TBC系统中的陶瓷涂层和金属粘合涂层都不能提供结构负载支撑,以容纳内部冷却通道。具有嵌入式凝固通道的结构粘合涂层的开发可以是未来先进涡轮系统的关键技术之一。在本研究中,通过使用氧化物分散体强化(ODS)粉末,提出了通过添加剂制造(AM)技术的高温合金基板(普遍用于制造燃气轮机组件)的高温保护结构涂层。利用新的组合机械粘合(MCB)加球磨(BM)工艺来生产适用于AM应用的ODS粉末。进行了通过直接能量沉积(DED)法在MAR-247基板上进行的AM处理的ODS涂层。然后将ODS涂覆的样品进行循环热载体超过4000个循环(每个循环在室温下在1100℃和45分钟之间交替。在选定的热循环中施加SEM和EDX用于ODS涂层的氧化物形成分析。特别地,分析了在不同热循环中的ODS涂层中γ蛋白酶的稳定性。测试结果在ODS涂层表面上显示出薄的连续耐用氧化铝氧化物层,经过4,000多个热循环。试验结果还显示出由于保护性氧化铝表面氧化物层引起的相对稳定的衬底微结构,并且保持ODS涂层/衬底界面的强键合。进行氧化AM处理的ODS样品的氧化体重增加,结果在类似的试验条件下与那些文献中可用的氧化铝(AFA)相比有利地比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号