首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >DETAILED VELOCITY AND HEAT TRANSFER MEASUREMENTS IN AN ADVANCED GAS TURBINE VANE INSERT USING MRV AND IR THERMOMETRY
【24h】

DETAILED VELOCITY AND HEAT TRANSFER MEASUREMENTS IN AN ADVANCED GAS TURBINE VANE INSERT USING MRV AND IR THERMOMETRY

机译:使用MRV和IR温度测量在先进的燃气轮机叶片插入中的详细速度和传热测量

获取原文

摘要

This work reports the results of paired experiments for a complex internal cooling flow within a gas turbine vane using Magnetic Resonance Velocimetry (MRV) and steady-state Infrared (IR) thermometry. A scaled model of the leading edge insert for a gas turbine vane with multi-pass impingement was designed, built using stereolithography (SLA) fabrication methods, and tested using MRV techniques to collect a three-dimensional, three-component velocity field data set for a fully turbulent test case. Stagnation and recirculation zones were identified and assessed in terms of impact on potential cooling performance. A paired experiment employed an IR camera to measure the temperature profile data of a thin, heated stainless steel impingement surface modeling the inside turbine blade wall cooled by the impingement from the vane cooling insert, providing complementary data sets. The temperature data allow for the calculation of wall heat transfer characteristics, including the Nusselt number distribution for cooling performance analysis to inform design and validate computational models. Quantitative and qualitative comparisons of the paired results show that the flow velocity and cooling performance are highly coupled. Module-to-module variation in the surface Nusselt number distributions are evident, attributable to the complex interaction between transverse and impinging flows within the apparatus. Finally, a comparison with internal heat transfer correlations is conducted using the data from Florschuetz [I]. Measurement uncertainty was assessed and estimated to be approximately ±7% for velocity and ranging from ±3% to ±10% for Nusselt number.
机译:该工作报告了使用磁共振测速(MRV)和稳态红外(IR)温度器的燃气轮机叶片内复合内部冷却流的配对实验结果。设计了具有多通撞击的燃气涡轮叶片的前缘插入件的缩放模型,使用立体化(SLA)制造方法构建,并使用MRV技术测试以收集三维三分速度场数据集完全湍流的测试用例。在对潜在的冷却性能的影响方面确定并评估了停滞和再循环区域。配对实验采用IR相机测量通过从叶片冷却插入件的冲击冷却的内部涡轮叶片壁的薄,加热的不锈钢冲击表面的温度分布数据,从而提供互补数据集。温度数据允许计算墙壁传热特性,包括用于冷却性能分析的营养数字分布,以告知设计和验证计算模型。配对结果的定量和定性比较表明,流速和冷却性能高度耦合。表面露天分布的模块到模块变化是明显的,可归因于设备内横向和撞击流之间的复杂相互作用。最后,使用来自Florschuetz [i]的数据进行与内部传热相关性的比较。评估测量不确定度并估计为速度约为±7%,并为NUSERSENT编号的±3%至±10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号