首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >CAN WATER DILUTION AVOID FLASHBACK ON A HYDROGEN ENRICHED MICRO GAS TURBINE COMBUSTION? A LARGE EDDY SIMULATIONS STUDY
【24h】

CAN WATER DILUTION AVOID FLASHBACK ON A HYDROGEN ENRICHED MICRO GAS TURBINE COMBUSTION? A LARGE EDDY SIMULATIONS STUDY

机译:水稀释可以避免富含富含富含氢气燃气轮机燃烧的闪回吗?一个大涡模拟研究

获取原文

摘要

Considering the growing interest in Power-to-Fuel, i.e. production of H_2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Especially in a decentralized production with small-scale cogeneration, micro Gas Turbines (mGTs) offer great advantages related to their high adaptability and flexibility, in terms of operation and fuel. Hydrogen (or hydrogen enriched methane) combustion is well-known to lead to flame and combustion instabilities. The high temperatures and reaction rates reached in the combustor can potentially lead to flashback. In the past, combustion air humidification (i.e. water addition) has proven effective to reduce temperatures and reaction rates, leading to significant NO_x emission reductions. Therefore, combustion air humidification can open a path to stabilize hydrogen combustion in a classical mGT combustor. However accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. In this framework, this paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without combustion air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations (LES) analysis. In a first step, the necessary minimal water dilution, to reach stable and low emissions combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched methane/air combustion cases. The results of this comparison show that, for the hydrogen enriched combustion, the same level of flame speed as in the reference case can be reached by adding 10 % (in mass fraction) of water. In a second step, the feasibility and flexibility of humidified hydrogen enriched methane/air combustion in an industrial mGT combustor have been demonstrated by performing high fidelity LES on a 3D geometry. Results show that steam dilution helped to lower the reactivity of hydrogen, and thus prevents flashback, enabling the use of hydrogen blends in the mGT at similar CO levels, compared to the reference case. These results will help to design future combustor towards more stability.
机译:考虑到对电力到燃料的兴趣越来越兴趣,即使用电解生产H_2来储存多余的可再生电力,燃烧的技术仍然具有在发电的未来发挥作用。特别是在具有小型热电联产的分散生产中,微型燃气轮机(MGT)在运行和燃料方面提供了与其高适应性和灵活性相关的优势。富人众所周知,氢气(或富氢甲烷)燃烧导致火焰和燃烧不稳定性。燃烧器达到的高温和反应速率可能导致闪回。在过去,燃烧空气加湿(即水加入)已被证明有效降低温度和反应率,导致显着的NO_X排放减少。因此,燃烧空气湿化可以打开一种稳定在经典MGT燃烧器中的氢燃烧的路径。然而,评估加湿对燃烧的影响的准确数据仍然缺少真正的MGT燃烧室几何形状和操作条件。在该框架中,本文介绍了纯甲烷和富氢甲烷/空气燃烧,在典型的MGT燃烧室(Curbec T100)中,无燃烧空气燃烧,使用大涡模拟(LES)分析。在第一步中,使用1D方法评估必要的最小水稀释,以与氢气达到稳定和低排放燃烧。为纯甲烷(参考壳体)和富氢甲烷/空气燃烧壳计算的一维未拉伸层状火焰。该比较的结果表明,对于富氢燃烧,可以通过加入10%(质量分数)的水来达到与参考情况下的相同水平的火焰速度。在第二步中,通过在3D几何形状上执行高保真LES,已经证明了在工业MGT燃烧器中富含富含氢化甲烷/空气燃烧的可行性和灵活性。结果表明,与参考病例相比,蒸汽稀释有助于降低氢的反应性,从而防止闪回,使得在MGT中使用氢气在类似CO水平中使用。这些结果将有助于为更稳定的稳定设计未来的燃烧器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号