首页> 外文会议>SPE Asia Pacific Oil Gas Conference and Exhibition >A New Method to Determine Friction Factor of Cuttings Slip Velocity Calculation in Vertical Wells Using Neural Networks
【24h】

A New Method to Determine Friction Factor of Cuttings Slip Velocity Calculation in Vertical Wells Using Neural Networks

机译:一种新方法,以确定垂直井下扦插湿速计算的摩擦因子用神经网络

获取原文

摘要

The slip velocity of cuttings is a calculation of the settlement velocity of a particle in a stagnant fluid. In dynamics, the slip velocity is defined as the difference between the solid and the fluid velocities. If the cuttings velocities are low, the cuttings may not be transported efficiently to the surface, causing a variety of inefficiency issues. For example, they may accumulate at the bottom of the wellbore and get regrinded by the bit. Determination of the correct value of this parameter in vertical wells has been the concern of many investigations in the oil and gas industry. API RP 13D (2010) standard uses Walker and Mayes' study (1975) to calculate the slip velocity for vertical wells but as discussed below, this model does not show accurate results compared to other models. Moore's model (1974) provides better slip velocity calculation compared to Walker and Mayes' model. These methods are based on providing three sets of equations for laminar, transition, and turbulent to correlate Reynolds number to friction factor for an average value of sphericity for the drilling cuttings. This paper describes a new method to determine the cuttings slip velocity in vertical wells using neural networks. Artificial neural networks have been successfully implemented in many disciplines in the oil and gas industry. The interconnected network between the neurons provides a nonlinear approximation of the data to solve complex models. The "Reynolds number vs. friction factor" data at different particles' sphericity graphs has been used to determine the friction factor and then apply it to the Stokes slip velocity equation. Moore's model does not consider the sphericity of the particles because it uses a generic value for this figure, however, the new technique covers a wider range of the sphericity of particles from 0.125 to 1.0. In addition, this model gives higher accuracy compared to the afformentioned models.
机译:切割的滑移速度是计算液体中颗粒的沉降速度。在动力学中,滑动速度被定义为固体和流体速度之间的差异。如果切割速度低,则切割可能不会有效地运输到表面,导致各种低效率问题。例如,它们可能会在井筒的底部积聚并被钻头抛出。在垂直井中确定该参数的正确价值是石油和天然气行业许多调查的关注。 API RP 13D(2010)标准使用Walker和Mayes的研究(1975)来计算垂直井的滑动速度,但如下所述,与其他模型相比,该模型并未显示精确的结果。摩尔模型(1974)提供了与Walker和Mayes模型相比的更好的滑动速度计算。这些方法基于为层状,转变和湍流提供三组方程,以将雷诺数与钻孔切割的平均值的平均值的摩擦因子相关。本文介绍了一种新方法,用于使用神经网络确定垂直井中的扦插滑移速度。在石油和天然气行业的许多学科中成功地实施了人工神经网络。神经元之间的互连网络提供了求解复杂模型的数据的非线性近似。在不同粒子的球形图处的“雷诺数与摩擦系数”数据已经用于确定摩擦系数,然后将其施加到Stokes滑动速度方程。 Moore的模型不考虑颗粒的球形,因为它使用该图的通用值,然而,新技术覆盖粒子的较宽范围,颗粒的球形度为0.125至1.0。此外,与富有的模型相比,该模型具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号