首页> 外文会议>SPE/DOE Improved Oil Recovery Symposium >Scaled Physical Model Experiments to Characterize the Gas-Assisted Gravity Drainage EOR Process
【24h】

Scaled Physical Model Experiments to Characterize the Gas-Assisted Gravity Drainage EOR Process

机译:缩放的物理模型实验,以表征气体辅助重力排水流程

获取原文

摘要

The year 2006 marks the first time the gas injection EOR production has surpassed that of steam injection processes in the US, signifying the growth of gas injection as a mature technology. In order to control the rising tendency of injected gas in horizontal floods, the water-alternating-gas (WAG) process has generally been the mode of operation in many fields. In spite of its wide application, the WAG process has not lived up to its expectations with reported recoveries in the range of 5-10% OOIP. In order to improve recoveries, we have been attempting to develop the gas-assisted gravity drainage process at LSU. This paper summarizes the effort of conducting scaled physical model experiments in a visual glassbead-packed model aimed at discerning the influence of some scaled dimensionless parameters, such as the capillary number, Bond number and gravity number, on the GAGD process performance. A 2-D physical model, of 16" X 24" X 1" dimensions, packed with uniform glass beads, was used to conduct visual experiments. These experiments were so designed as to mimic the dimensionless parameters observed in some field projects. The secondary mode GAGD floods yielded recoveries up to 80% OOIP. Additionally, the recoveries displayed a semi- logarithmic relationship with gravity number (ratio of gravity to viscous forces). Interestingly, this relationship was observed to hold good for the high-pressure GAGD corefloods and even the field production data from gravity-stable gas injection projects conducted in pinnacle reefs. A multi-variable regression analysis of the laboratory as well as field data indicated that the Bond number, being the ratio of gravity to capillary forces, had a greater influence on GAGD performance than other parameters. In addition to the observed high recoveries, our attempts to relate the model run times to field project durations, through dimensionless time considerations, have indicated reasonably good rates of production when GAGD process is implemented in field projects.
机译:2006年第一次标志着气体喷射EOR生产超过了美国蒸汽喷射过程的蒸汽注射过程,表示气体注入的生长为成熟技术。为了控制水平洪水中注入气体的上升趋势,水交交配气体(WAG)工艺通常是许多领域的操作模式。尽管应用广泛,但摇摆过程并未达到其预期,以报告的ooIP报告的回收率。为了提高回收率,我们一直在试图在LSU开发气体辅助的重力排水过程。本文总结了在视觉上玻璃填充模型中进行缩放物理模型实验的努力,旨在辨析在GAGD工艺性能上的一些缩放无量纲参数的影响,例如毛细管数,粘合数和重力数。使用均匀玻璃珠的2-D物理模型为16“x 24”x 1“尺寸,用于进行视觉实验。这些实验如此设计,以模仿在某些场地项目中观察到的无量纲参数。次要的模式Gagd洪水产生了高达80%的ooip的恢复。另外,回收率与重力数显示了半对数关系(重力与粘性力的比率)。有趣的是,这种关系被观察到对高压Gagd Coreflood和高压Gagd Corefloods和甚至来自Pinnacle Reefs的重力稳定气体注射项目的现场生产数据。实验室的多变量回归分析以及现场数据表明,键合数,是对毛细力的重力比率更大关于GAGD性能而不是其他参数。除了观察到的高回收率外,我们试图通过无维时间将模型运行时间与现场项目持续时间相关联考虑因素,在现场项目中实施了GAGD过程时,表明了合理的生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号