首页> 外文会议>International Conference on High Performance Computing >Large-Scale Molecular Dynamics Simulations on Modular Supercomputer Architecture with Gromacs
【24h】

Large-Scale Molecular Dynamics Simulations on Modular Supercomputer Architecture with Gromacs

机译:Gromacs模块化超级计算机建筑的大规模分子动力学模拟

获取原文
获取外文期刊封面目录资料

摘要

Modular Supercomputer Architecture is an innovative idea to bring advantages of different HPC architectures currently available together and make it possible for the users to benefit from it by running different parts of their applications on the most appropriate hardware to reach the best performance with high energy efficiency. DEEP-EST project aims not just at building MSA prototype, but rather co-design it by a collaboration of hardware and application software experts. The HPC applications encompass scientific fields like neuroscience, molecular dynamics, radio astronomy, space weather, data analytics in earth science and high energy physics. Here, we present our research on running large-scale molecular dynamics simulations with one the worlds' fastest MD software - Gromacs on two modules (Booster - KNL based HPC system and Cluster - Haswell based HPC system) of JURECA supercomputing system at Juelich Supercomputer Centre. We tested the performance scalability of the simulation of 20 million atoms biomolecular system running Gromacs in Cluster-Booster configuration. The long-range electrostatics calculations were conducted on the JURECA Cluster nodes, while all of the rest calculations - on JURECA Booster. Through source code profiling and Gromacs internal performance counters analysis, we investigated the influence of the performance scalability the different application's parts on the overall application performance scalability. We optimized the job parameters like Cluster to Booster number of cores ration and the corresponding number of module-interconnecting gateways. Our results prove the applicability of the MSA concept in the field of Molecular Dynamics.
机译:模块化超级计算机体系结构是一种创新的想法,可以带来目前可用的不同HPC架构的优势,并使用户可以通过在最合适的硬件上运行不同的应用程序来抵达其应用程序的不同部分,以达到高能量效率的最佳性能。 Deep-Est项目不仅仅是在构建MSA原型,而是通过协作硬件和应用软件专家的合作设计。 HPC应用包括神经科学,分子动力学,无线电天文,空间天气,地球科学和高能量物理学的数据分析等科学领域。在这里,我们在Juelca超级计算机中心的两个模块(基于Booster-Knl的HPC系统和Cluster-Hasely基于HPC系统和Cluster-Haswell-Haswell基于Wallwell基于Wallwell-Hypell-Havewulting System)的大规模分子动态模拟的研究。我们测试了2000万个原子模拟的性能可扩展性,在集群增压器配置中运行Gromacs的20万个原子分子系统。在Jureca集群节点上进行远程静电分析,而所有RED计算 - 在Jureca Booster上。通过源代码分析和Gromacs内部性能计数器分析,我们调查了性能可扩展性不同应用程序的零件对整体应用性能可扩展性的影响。我们优化了群集的作业参数,以增强核心级数和相应数量的模块互连网关。我们的结果证明了MSA概念在分子动力学领域的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号