首页> 外文会议>International conference on domain decomposition methods >Direct and Iterative Methods for Numerical Homogenization
【24h】

Direct and Iterative Methods for Numerical Homogenization

机译:用于数值均质化的直接和迭代方法

获取原文

摘要

Numerical approximation usually aims at modifications of standard finite element approximations of partial differential equations with highly oscillatory coefficients that preserve the accuracy known in the smooth case. Using classical homogenization as a guideline, these modifications are obtained from local auxiliary problems (Abdulle et al., 2012; Efendiev and Hou, 2009; Hughes et al., 1998). The error analysis for these kinds of methods is typically restricted to coefficients with separated scales and often requires periodicity (Abdulle, 2011; Abdulle et al., 2012; Hou et al., 1999). These restrictions were overcome in a recent paper by Malqvist and Peterseim (2014) that provides quasioptimal energy and L~2 error estimates without any additional assumptions on periodicity and scale separation (Henning et al., 2014; Malqvist and Peterseim, 2014). While their approach relies on (approximate) orthogonal subspace decomposition, alternative decompositions into a coarse space and local fine-grid spaces associated with low and high frequencies has been recently considered by Kornhuber and Yserentant (2015). Here, we review these two decomposition techniques providing direct (Malqvist and Peterseim, 2014) and iterative methods (Kornhuber and Yserentant, 2015) for numerical homogenization in order to better understand conceptual similarities and differences. We also illustrate the performance of the iterative variant by first numerical experiments in d = 3 space dimensions.
机译:数值近似通常旨在具有高度振荡系数的部分微分方程的标准有限元近似的修改,其保持平滑情况下已知的精度。使用经典均质化作为指导,这些修改是从局部辅助问题获得的(Abdulle等,2012; Efendiev和Hou,2009; Hughes等,1998)。这些方法的误差分析通常仅限于分离尺度的系数,并且通常需要周期性(Abdulle,2011; Abdulle等,2012; Hou等,1999)。在最近的Malqvist和Petersim(2014)纸上克服了这些限制,该纸张提供了额外的能量和L〜2错误估计,没有关于周期性和规模分离的任何额外假设(Henning等,2014; Malqvist和Peterseim,2014)。虽然它们的方法依赖于(近似)正交子空间分解,但是Kornhuber和Yserentant(2015)最近考虑了与低频和高频相关联的粗糙空间和局部细网格空间中的替代分解。在这里,我们审查这两种分解技术提供直接(Malqvist和Petersim,2014)和迭代方法(Kornhuber和Yserentant,2015),以便更好地理解概念相似性和差异。我们还通过D = 3空间尺寸的第一数值实验说明了迭代变体的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号