首页> 外文会议>International conference on domain decomposition methods >Direct and Iterative Methods for Numerical Homogenization
【24h】

Direct and Iterative Methods for Numerical Homogenization

机译:数值均质化的直接和迭代方法

获取原文

摘要

Numerical approximation usually aims at modifications of standard finite element approximations of partial differential equations with highly oscillatory coefficients that preserve the accuracy known in the smooth case. Using classical homogenization as a guideline, these modifications are obtained from local auxiliary problems (Abdulle et al., 2012; Efendiev and Hou, 2009; Hughes et al., 1998). The error analysis for these kinds of methods is typically restricted to coefficients with separated scales and often requires periodicity (Abdulle, 2011; Abdulle et al., 2012; Hou et al., 1999). These restrictions were overcome in a recent paper by Malqvist and Peterseim (2014) that provides quasioptimal energy and L~2 error estimates without any additional assumptions on periodicity and scale separation (Henning et al., 2014; Malqvist and Peterseim, 2014). While their approach relies on (approximate) orthogonal subspace decomposition, alternative decompositions into a coarse space and local fine-grid spaces associated with low and high frequencies has been recently considered by Kornhuber and Yserentant (2015). Here, we review these two decomposition techniques providing direct (Malqvist and Peterseim, 2014) and iterative methods (Kornhuber and Yserentant, 2015) for numerical homogenization in order to better understand conceptual similarities and differences. We also illustrate the performance of the iterative variant by first numerical experiments in d = 3 space dimensions.
机译:数值逼近通常旨在修改具有高振荡系数的偏微分方程的标准有限元逼近,以保持光滑情况下已知的精度。使用经典的均质化作为指导,这些修改是从局部辅助问题中获得的(Abdulle等人,2012; Efendiev和Hou,2009; Hughes等人,1998)。这些方法的误差分析通常仅限于具有不同标度的系数,并且通常需要周期性(Abdulle,2011; Abdulle等,2012; Hou等,1999)。 Malqvist和Peterseim(2014)在最近的一篇论文中克服了这些限制,该论文提供了准最佳能量和L〜2误差估计,而没有关于周期性和尺度分离的任何其他假设(Henning等人,2014; Malqvist和Peterseim,2014)。尽管他们的方法依赖于(近似)正交子空间分解,但Kornhuber和Yserentant(2015)最近考虑了将分解分解为与低频和高频相关的粗略空间和局部细网格空间的方法。在这里,我们回顾了这两种分解技术,它们为数值均化提供了直接方法(Malqvist和Peterseim,2014)和迭代方法(Kornhuber和Yserentant,2015),以便更好地理解概念上的异同。我们还通过在d = 3空间尺寸中进行的首次数值实验来说明了迭代变量的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号