首页> 外文会议>IEEE International Conference on Plasma Science >Accessing Ultra-High Pressure, Quasi-Isentropic States of Matter
【24h】

Accessing Ultra-High Pressure, Quasi-Isentropic States of Matter

机译:进入超高压,准不等于物质的态

获取原文

摘要

Summary form only given. A new approach to materials science at extreme pressures has been developed on the OMEGA laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation. This has been demonstrated at OMEGA at pressures of P = 0.1-2.0 Mbar in Al foils. In an important application, using in-flight X-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. The material strength is predicted to be as much as an order of magnitude higher at P ~ 1 Mbar than at ambient pressures. Initial RT measurements testing this prediction in foils of Al and V will be shown. We also use TEM microscopy of recovered targets to show that the samples never melted, and the presence of pressure-induced structural defects. Experimental designs based on this drive have been developed for the NIF laser, predicting that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega - accessing new regimes of dense, high-pressure matter
机译:摘要表格仅给出。使用斜坡等离子体活塞驱动器,在欧米茄激光下开发了一种新的压力的新方法。激光器通过固体塑料储存器驱动冲击,该塑料储存器在后部自由表面上卸下,在真空间隙上膨胀,并在研究下的金属样品上停滞。这产生了轻微增加的压脊压力,几乎不等地压缩样品。通过调节激光能量和脉冲长度,间隙尺寸和储层密度,可以改变样品的峰值压力,可以通过调节激光能量和脉冲长度,间隙尺寸和储存器密度来改变。这已经在ω在铝箔中的压力下进行了ω。在一个重要的应用中,使用飞行中的X射线射线照相造影,可以通过测量瑞利 - 泰勒(RT)不稳定界面的生长速率(稳定化)的减少来推断出高压下固态样品的材料强度。预测材料强度在P〜1毫巴高于比环境压力高的数量级。初始RT测量测试在A1和V的箔中测试该预测。我们还使用回收的目标的TEM显微镜表明样品从未融化,并且存在压力诱导的结构缺陷。基于该驱动器的实验设计已经为NIF激光开发,预测固态样品可以是准二等级的驱动,以压力高于Omega的数量级 - 访问致密的,高压物质的新制度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号