首页> 外文会议>IEEE International Conference on Plasma Science >1D PIC simulation of microscale breakdown in gaps with a non-uniform background neutral gas density
【24h】

1D PIC simulation of microscale breakdown in gaps with a non-uniform background neutral gas density

机译:1D PIC仿真在间隙中的微尺度故障,具有非均匀背景中性气体密度

获取原文

摘要

An explicit, electrostatic particle-in-cell (PIC) code with complex boundary conditions and direct simulation Monte Carlo (DSMC) particle collisions is utilized to investigate one dimensional direct current breakdown. Two electrodes are separated by a microscale gap with a non-uniform neutral gas distribution. For example, there may be a higher density near the anode as a result of vacuum seal failure near the anode. The simulation model includes Auger neutralization and cold field electron emission from the cathode as well as electron-neutral elastic, ionization, and excitation interactions. The simulated breakdown voltages at various electrode gap sizes are compared to experimental data and the Paschen curve. Previously, it has been found that cold field electron emission can explain the breakdown voltage deviation from the Paschen curve measured for small gaps.1, 2 Furthermore, even in large gaps, as breakdown proceeds the plasma density becomes large enough and thus the cathode sheath thin enough that cold field emission dominates and super-exponential current growth results.3 Breakdown was found to be sensitive to the neutral gas density distribution across the gap. Specifically, if the gap is large enough that the cold field emission is negligible then gas concentrated near the cathode results in higher breakdown voltages since electrons leaving the cathode due to Auger neutralization are not yet energetic enough to ionize the high density neutral gas at the cathode. Conversely, if the gap size is of order the mean free path then gas concentrated near the anode results in smaller breakdown voltages because the electrons reaching the anode have energies near the peak of the ionization cross section near the higher density anode region. These lower breakdown voltages should be taken into account when designing vacuum electronics for failure tolerance.
机译:利用复杂边界条件和直接仿真蒙特卡罗(DSMC)颗粒碰撞的明确静电粒子 - 电池(PIC)代码用于研究一维直接电流击穿。两个电极通过具有非均匀空气分布的微观间隙分离。例如,由于阳极附近的真空密封故障,阳极附近可能存在较高的密度。仿真模型包括来自阴极的螺旋测量和冷场电子发射以及电子中性弹性,电离和激发相互作用。将各个电极间隙尺寸的模拟击穿电压与实验数据和Paschen曲线进行比较。此前,已经发现冷场电子发射可以解释与测量的小间隙测量的泛曲线偏差。 1,2 ,即使在很大的间隙中,由于击穿突破等离子体密度变为足够大,因此阴极护套稀有,冷场排放占主导地位和超级指数电流增长结果。发现 3 击穿对间隙的中性气体密度分布敏感。具体地,如果间隙足够大,即冷场排放可忽略不计,则浓缩在阴极附近的气体导致较高的击穿电压,因为由于螺旋中和而离开阴极的电子尚未充满活力,以使高密度中性气体在阴极处电离。相反,如果间隙尺寸是顺序的平均自由路径,则靠近阳极浓缩的气体导致较小的击穿电压,因为到达阳极的电子在较高密度阳极区域附近的电离横截面的峰值附近具有能量。在为故障耐受性设计真空电子器件时,应考虑这些较低的击穿电压。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号