首页> 外文会议>IEEE International Conference on Plasma Science >Plasma doping and plasma-less doping for SI: application to the sub-quarter micron surface channel PMOSFET and solid plasma source application for safety operation
【24h】

Plasma doping and plasma-less doping for SI: application to the sub-quarter micron surface channel PMOSFET and solid plasma source application for safety operation

机译:Si的等离子体掺杂和等离子体掺杂:应用于亚季度微米表面通道PMOSFET和固体等离子体源用于安全操作的应用

获取原文

摘要

Summary form only given. Ultrashallow doping profiles are required for manufacturing sub-quarter micron CMOS LSI in the 21st century. Several methods have been proposed. They are plasma doping (PD), plasma immersion ion implantation (PIII) and high temperature rapid vapor doping (RVD). The plasma doping method (PD and PIII) has been considered as one of the most promising candidates for obtaining ultrashallow doping profiles, because of its low energy, high throughput, room temperature operation and lower machine cost. In this paper, we show that plasma doping can be applied to 0.17 /spl mu/m Surface Channel (SC)-PMOSFET and vapor doping can be also successfully performed under room temperature conditions with plasma pre-treatment. We call the latter method, room temperature vapor doping (RTVD). The very shallow depth profiles of the samples doped with PD using gas and solid source and RTVD are confirmed. Typical electrical characteristics of SC-PMOSFET made by the se methods are compared. The PD method with very high throughput can alternate with low energy ion implantation technology in the near future, and RTVD will be the candidate for achieving much shallower doping profiles with very high throughput.
机译:摘要表格仅给出。在21世纪,制造次季度Micron CMOS LSI所需的超级掺杂曲线。已经提出了几种方法。它们是等离子体掺杂(Pd),等离子体浸渍离子注入(PIII)和高温快速蒸汽掺杂(RVD)。等离子体掺杂方法(PD和PIII)被认为是最有希望的候选者之一,因为其能量低,产量高,室温操作和较低的机器成本,因此是获得超级掺杂型材的最有希望的候选者之一。在本文中,我们表明等离子体掺杂可以施加到0.17 / SPL mu / m表面通道(SC)和蒸汽掺杂和蒸汽掺杂也可以在室温条件下成功进行等离子体预处理。我们称后一种方法,室温蒸汽掺杂(RTVD)。使用气体和固体源和RTVD掺杂有Pd的样品的非常浅的深度谱。比较了SE方法的SC-PMOSFET的典型电气特性。具有非常高的吞吐量的PD方法可以在不久的将来与低能量离子植入技术交替,RTVD将成为实现大量较浅产量的较浅的较浅的候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号