首页> 外文会议>ASME Pressure Vessels and Piping conference >QUALIFICATION OF NUCLEAR EQUIPMENT AGAINST HYDROGEN DETONATION USING EXPLICIT AND IMPLICIT FINITE ELEMENT METHODS
【24h】

QUALIFICATION OF NUCLEAR EQUIPMENT AGAINST HYDROGEN DETONATION USING EXPLICIT AND IMPLICIT FINITE ELEMENT METHODS

机译:利用明确和隐含有限元方法对核爆炸核爆炸的资格

获取原文

摘要

Conservative static load methodologies have been devised to design equipment against postulated hydrogen detonation. However, these methodologies do not address the dynamic response of the system. Moreover, dynamic response methodologies can be used in lieu of static analyses, if the moving pressure profile due to detonation corresponds to the Chapman-Jouguet pressure and velocity. This moving pressure profile can be applied to a finite element model (FEM) in several ways. One approach is to develop the moving pressure profile by combining the Chapman-Jouguet model of an ideal detonation with the Taylor-Zeldovich [6] similarity solution to obtain an analytic solution to the flow field behind a steadily propagating detonation in a tube. This approach is robust and forgoes modeling the complex physics associated with transitioning from deflagration to detonation and the specific chemical kinetics associated with the gaseous species involved. In another approach, a Lagrange-Arbitrary Lagrange Eulerian (ALE) Model can be used. This type of modeling uses both implicit and explicit constitutive equations that are suitable for simulating fluid structure interaction (FSI) and the disintegration of materials. The method can be exemplified as state variables from the motion of a Lagrange mesh being advected to that of the background ALE mesh. Parts that flow in the ALE mesh interact with the Lagrange structure. However, direct FSI is through specification of the ALE FSI projection card. The ensuing FSI is solved and the state variables of the Lagrange mesh are adjusted for the next iteration. In this scheme the chemical kinetics associated with the detonation of specific mixtures of gaseous species can be considered.
机译:已经设计了保守的静电载荷方法来设计针对假设氢爆炸的设备。但是,这些方法不会解决系统的动态响应。此外,如果由于爆炸引起的移动压力曲线对应于Chapman-Jouge压力和速度,则可以使用动态响应方法代替静态分析。该移动压力分布可以以几种方式应用于有限元模型(FEM)。一种方法是通过将理想的爆炸的查普曼-Jouguet模型与Taylor-Zeldovich [6]相似性解决方案组合来发展移动压力型材,以获得对管中稳定地传播爆炸后的流场的分析溶液。这种方法是稳健的,并且用于建模与从剥离到爆发的转变相关的复杂物理学和与所涉及的气态物种相关的特定化学动力学相关。在另一种方法中,可以使用拉格朗日任意拉格朗日欧拉(ALE)模型。这种类型的建模使用隐式和明确的本结构侧方程,其适用于模拟流体结构相互作用(FSI)和材料的崩解。该方法可以例示为来自Lagrange网格的运动的状态变量,该态变量与背景ALE网格的运动相连。在ALE网格中流动的部件与拉格朗日结构相互作用。但是,直接FSI是通过ALE FSI投影卡的规范。求解随后的FSI,并调整Lagrange网格的状态变量以进行下一次迭代。在该方案中,可以考虑与爆炸的气态物质的特异性混合物相关的化学动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号