首页> 外文会议>AIAA SPACE conference exposition >Electric Propulsion Tug Modeling Improvements and Application to the NASA/DARPA Manned Geosynchronous Servicing Study
【24h】

Electric Propulsion Tug Modeling Improvements and Application to the NASA/DARPA Manned Geosynchronous Servicing Study

机译:电动推进拖船建模改进和应用于NASA / DARPA载人地球同步服务研究

获取原文

摘要

This paper describes the improvements that have been made to design tools involved in vehicle and mission modeling of electric propulsion vehicles and inter/intra-orbit relocation vehicles i.e. space tugs. The integration of advanced solar array technology, in-development propulsion systems, rendezvous and capture mechanisms and sensors, and orbital maneuvering trajectories into the Modular Concurrent Engineering Methodology (Mod CEM) design tool has been investigated. These improvements have supported tasks for both the USAF Space and Missile Command (SMC) Materiel Innovation Working Group (MIWG) and the NASA/DARPA Manned Geosynchronous Servicing Study. The effort incorporated power and sizing information for the Boeing Fast Access Spacecraft Testbed (FAST) concentrator and Integrated Blanket/Interconnect System (IBIS) planar solar arrays. Engineering models, technology trends, and specific performance and design information were also incorporated for Hall-effect thrusters, ion engines, and variable specific impulse magnetoplasma rockets (VASIMR). In addition, a model of a smart rendezvous and capture package that includes systems to enable autonomous rendezvous and docking with arbitrarily design satellites was incorporated for payload mass, power, and system effects. These hardware modeling advancements have also been coupled with trajectory analysis and concept of operations development. This allowed system studies to be performed assessing the impact of each technology advancement, system effects for tug reusability, and mission applications including: within-geosynchronous Earth orbit (GEO) transfer, low Earth orbit (LEO)-to-GEO transfer, GEO-to-High Earth Orbit (HEO) transfer, and servicing operations. Vehicle masses, phasing requirements, fuel use and refueling needs were analyzed and reported for each technology and mission class. For most of the applications explored the results showed clear benefits to the development of electric propulsion based tug systems in comparison to chemical propulsion based tug systems.
机译:本文介绍了对涉及车辆和任务建模的设计工具以及Inter / Interra-Interra-Intral Relation车辆中所涉及的设计的改进。先进的太阳能电池阵列技术的集成,在开发推进系统,交会采集装置和传感器,以及到模块化并行工程方法(国防部CEM)设计工具轨道机动轨迹进行了研究。这些改进支持了USAF空间和导弹命令(SMC)物资创新工作组(MIWG)和NASA / DARPA载人地球同步服务研究的任务。该努力加入了波音快速访问航天器试验用(快速)集中器和集成毯/互连系统(IBIS)平面太阳阵列的电力和尺寸信息。工程模型,技术发展趋势,以及具体的性能和设计信息也纳入了霍尔效应推进器,离子发动机和可变比冲磁等离子体火箭(VASIMR)。此外,还包括系统以实现自主集合和对接的捕获包的智能集合和捕获包的模型,并附有用于有效载荷质量,功率和系统效果。这些硬件建模进步还与轨迹分析和运营发展概念相结合。要执行这使得系统的研究评估每项技术进步的影响,系统的影响拖船可重用性,以及任务应用,包括:内,地球同步轨道(GEO)传输,低地球轨道(LEO)-to-GEO传输,地理高地地球轨道(HEO)转移和维修操作。分析了车辆,分阶段要求,燃料使用和加油需求,并报告了每种技术和任务课程。对于大多数应用探索,结果表明,与基于化学推进的拖船系统相比,结果表明,基于电动推进的拖曳系统的开发明显好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号