首页> 外文会议>AIAA SPACE conference exposition >Electric Propulsion Tug Modeling Improvements and Application to the NASA/DARPA Manned Geosynchronous Servicing Study
【24h】

Electric Propulsion Tug Modeling Improvements and Application to the NASA/DARPA Manned Geosynchronous Servicing Study

机译:电动拖轮模型的改进及其在NASA / DARPA载人地球同步服务研究中的应用

获取原文

摘要

This paper describes the improvements that have been made to design tools involved in vehicle and mission modeling of electric propulsion vehicles and inter/intra-orbit relocation vehicles i.e. space tugs. The integration of advanced solar array technology, in-development propulsion systems, rendezvous and capture mechanisms and sensors, and orbital maneuvering trajectories into the Modular Concurrent Engineering Methodology (Mod CEM) design tool has been investigated. These improvements have supported tasks for both the USAF Space and Missile Command (SMC) Materiel Innovation Working Group (MIWG) and the NASA/DARPA Manned Geosynchronous Servicing Study. The effort incorporated power and sizing information for the Boeing Fast Access Spacecraft Testbed (FAST) concentrator and Integrated Blanket/Interconnect System (IBIS) planar solar arrays. Engineering models, technology trends, and specific performance and design information were also incorporated for Hall-effect thrusters, ion engines, and variable specific impulse magnetoplasma rockets (VASIMR). In addition, a model of a smart rendezvous and capture package that includes systems to enable autonomous rendezvous and docking with arbitrarily design satellites was incorporated for payload mass, power, and system effects. These hardware modeling advancements have also been coupled with trajectory analysis and concept of operations development. This allowed system studies to be performed assessing the impact of each technology advancement, system effects for tug reusability, and mission applications including: within-geosynchronous Earth orbit (GEO) transfer, low Earth orbit (LEO)-to-GEO transfer, GEO-to-High Earth Orbit (HEO) transfer, and servicing operations. Vehicle masses, phasing requirements, fuel use and refueling needs were analyzed and reported for each technology and mission class. For most of the applications explored the results showed clear benefits to the development of electric propulsion based tug systems in comparison to chemical propulsion based tug systems.
机译:本文介绍了对电动推进车辆和轨道间/轨道内重新定位车辆即太空拖船的车辆和任务建模所涉及的设计工具所进行的改进。已经研究了将先进的太阳能电池阵列技术,开发中的推进系统,会合和捕获机制与传感器以及轨道机动轨迹集成到模块化并行工程方法学(Mod CEM)设计工具中的情况。这些改进为美国空军太空与导弹司令部(SMC)装备创新工作组(MIWG)和NASA / DARPA载人地球同步服务研究提供了支持。这项努力将功率和尺寸信息纳入了波音快速进入航天器试验台(FAST)集中器和集成式毯/互连系统(IBIS)平面太阳能电池阵列。工程模型,技术趋势以及特定的性能和设计信息也被并入了霍尔效应推进器,离子发动机和可变比冲磁极等离子体火箭(VASIMR)。此外,为了有效负载质量,功率和系统效果,并入了一个智能会合和捕获程序包模型,该模型包括使系统能够与任意设计的卫星进行自主会合和对接的系统。这些硬件建模方面的进步还与轨迹分析和运营开发的概念相结合。这样就可以进行系统研究,评估每种技术进步的影响,系统对拖船可重用性的影响以及任务应用程序,包括:地球同步地球内轨道(GEO)传输,低地球轨道(LEO)到GEO的传输,GEO-到高地球轨道(HEO)的转移和维修操作。针对每种技术和任务类别,分析并报告了车辆质量,定相要求,燃料使用和加油需求。与基于化学推进的拖船系统相比,对于大多数探索的应用结果表明,基于电力推进的拖船系统的开发具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号