首页> 外文会议>AHS International annual forum >Aerodynamic Optimization Study of a Coaxial Helicopter Rotor
【24h】

Aerodynamic Optimization Study of a Coaxial Helicopter Rotor

机译:同轴电视转子的空气动力学优化研究

获取原文

摘要

Aerodynamic issues are discussed in the design of an optimum contra-rotating coaxial helicopter rotor system. The approaches needed to make profitable rotor design changes to improve performance in both hovering and forward flight are described. As a result of rotor-on-rotor flow interference effects, and becase a coaxial rotor system must generally operate at a torque-balanced condition, the upper and lower rotors are shown to encounter significantly different aerodynamic conditions, especially in hovering flight. A general design goal for maximizing performance is to minimize the combined sources of losses on the upper and lower rotors, particularly those resulting from aerodynamic interference. Parametric studies were conducted to study the effects of changing inter-rotor spacing, blade twist rates, and blade planform, on the interdependent loads produced on the upper and lower rotors, respectively. A formal, multi-step optimization process was then conducted by coupling a free-vortex wake method with an optimization algorithm based on the method of feasible directions. The goal was to quickly find the best blade geometry to give the highest rotor figure of merit in hover and/or the minimum power required in forward flight. Because of the inherent aerodynamic differences at each rotor, an optimum performing coaxial rotor is shown to require different blade shapes (i.e., with different twists and planforms) on the upper and lower rotors. Furthermore, because of the differential thrust sharing on the rotors, it is shown that to maximize the stall margins, the upper rotor of the pair must have a higher value of solidity. While the coaxial rotor optimization problem is shown to be nonconvex, the present study confirms that rotor efficiency can be increased by striving to find the optimum distributions of blade twist and plan-form, even though the two rotors may ultimately end up with different blade shapes.
机译:在最佳对抗旋转同轴直升机转子系统的设计中讨论了空气动力学问题。描述了使有利可图的转子设计改变以提高悬停和前向飞行中的性能所需的方法。由于转子转子流动干扰效应,并且同轴转子系统通常必须在扭矩平衡状态下操作,所示的上转子和下转子被示出为遇到显着不同的空气动力学条件,特别是在悬停飞行中。最大化性能的一般设计目标是最小化上转子和下转子上的损耗的组合源,特别是由于空气动力学干扰导致的损失。进行参数研究以研究改变转子间距,叶片扭转速率和叶片平面的影响,分别在上转子和下转子上产生的相互依存载荷上。然后通过基于可行的方法的方法耦合自由涡旋唤醒方法,通过耦合自由涡旋唤醒方法进行正式的多步优化过程。目标是快速找到最佳的刀片几何形状,以提供最高的悬停中的旋转体重和/或前向飞行所需的最低功率。由于每个转子的固有的空气动力学差异,所示的性交同轴转子被示出为在上转子和下转子上需要不同的刀片形状(即,具有不同的曲折和平面框架)。此外,由于转子上的差动推力共用,所示的是为了最大化失速的边​​缘,该对的上转子必须具有更高的固体值。虽然同轴转子优化问题被显示为非膨胀,但本研究证实可以通过努力找到叶片扭曲和平面形式的最佳分布来增加转子效率,即使两个转子最终最终最终以不同的刀片形状最终。

著录项

  • 来源
  • 会议地点
  • 作者

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类 V275.1;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号