首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >(Invited) Insights on Scale-up of BiVO_4-Based Photoelectrochemical Water Splitting Devices
【24h】

(Invited) Insights on Scale-up of BiVO_4-Based Photoelectrochemical Water Splitting Devices

机译:(邀请的)关于基于Bivo_4的光电化学水分裂装置扩展的洞察

获取原文

摘要

With the STH efficiencies of metal oxide-based PV-PEC water splitting devices now approaching 10%, the next step is to move beyond laboratory experiments and demonstrate large area devices. We demonstrate an unbiased 50 cm~2 PV-PEC water splitting device with an STH efficiency of 2.1%. While this is the highest reported value for a large-area BiVO_4-based water splitting device, it is still a factor of ~3 below the 6.3% efficiency we achieve for the corresponding small-area device. This illustrates that straightforward scale-up of spray-deposited BiVO_4 photoanodes from <1 to 50 cm~2 leads to significant efficiency losses. We studied the influences of variation in materials quality over larger areas, substrate conductivity, electrolyte conductivity, and cell geometry. At relatively modest photocurrent densities (2 - 3 mA/cm~2), the total voltage losses amount to ca. 600 mV for our 50 cm~2 device. The ohmic losses in the transparent conducting substrate (F-doped SnO_2) represent only ~10% of the total losses. A much larger loss mechanism is due to mass transport limitations of the ionic species in the electrolyte. Specifically, we show that lateral diffusion in the direction parallel to the electrode surface plays a more important role that one would intuitively expect. We further quantified the different loss mechanisms using a combination of finite element analysis modeling (COMSOL Multiphysics) and in-situ quantitative analysis of the fluid dynamics and pH of the electrolyte using particle image velocimetry and fluorescence techniques (Figure 1). This feedback mechanism between simulation and experiment allows a more accurate model construction and validation. Based on these insights, electrochemical engineering strategies to overcome the losses associated with scale-up are offered, which would limit the voltage loss for large-area devices to less than 50 mV.
机译:随着金属氧化物的PV-PEC水分裂装置的STH效率,现在接近10%,下一步是超越实验室实验并展示大面积器件。我们展示了一个不偏不倚的50cm〜2PV-PV-PV-PV-PEC水分解装置,STH效率为2.1%。虽然这是一个基于大面积Bivo_4的水分裂装置的最高值,但它仍然是对于相应的小区域设备的6.3%效率低于6.3%。这说明从<1至50cm〜2的喷射沉积的Bivo_4光阳极的直接屈曲导致显着的效率损失。我们研究了材料质量变化在较大区域,衬底电导率,电解质导电性和细胞几何形状的影响。在相对适度的光电流密度(2 - 3 mA / cm〜2),总电压损耗为CA。我们的50厘米〜2个设备为600 MV。透明导电底物(F掺杂SnO_2)中的欧姆损耗仅表示总损耗的约10%。更大的损失机制是由于电解质中离子物质的质量传输限制。具体地,我们表明,横向扩散在平行于电极表面的方向上起着更重要的作用,即一个人会直观地期望。我们使用有限元分析建模(COMSOL Multiphysics)的组合以及使用颗粒图像速度和荧光技术的流体动力学和电解质的pH的原位定量分析来进行不同的损失机制。模拟和实验之间的该反馈机制允许更准确的模型构建和验证。基于这些见解,提供了克服与扩大尺度相关的损失的电化学工程策略,这会将大面积器件的电压损耗限制在小于50 mV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号