首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Electron Microscopy Study of Platinum Group Metal-Free Catalysts Synthesized By High-Throughput Approaches
【24h】

Electron Microscopy Study of Platinum Group Metal-Free Catalysts Synthesized By High-Throughput Approaches

机译:通过高通量方法合成的铂族金属催化剂的电子显微镜研究

获取原文

摘要

Platinum group metal-free (PGM-free) catalysts are being explored for the oxygen reduction reaction in proton exchange membrane fuel cells. Since both their mass activity and durability are lagging their more developed Pt-based counterparts, accelerated catalyst discovery is this area is sorely needed. High-throughput approaches to catalyst synthesis and testing are an ideal approach to exploring this broad design space which includes precursor type, transition metal loading, and pyrolysis temperature. A range of such materials were synthesized and tested in Argonne National Laboratory's High Throughput Research Laboratory and characterized by a variety of advanced analytical techniques, including scanning transmission electron microscopy (STEM). Low-voltage, aberration-corrected STEM was coupled with spectroscopic techniques to quantify atomic scale differences in the morphology of each catalyst. These highly localized measurements were coupled with X-ray techniques, including X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, to achieve a more complete view of the structural properties which impact mass activity and durability and the synthesis conditions which achieve such structures. These results, along with the application of new STEM imaging modalities and combinatorial techniques to accelerate throughput, will be presented. This work was supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office under the Electrocatalysis Consortium (ElectroCat). Microscopy performed as part of a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility.
机译:在质子交换膜燃料电池中的氧还原反应探索铂族基团无金属(PGM的)催化剂。由于它们的群众活动和耐用性都滞后于其更开发的基于PT的对应物,因此加速催化剂发现是如此需要该区域。催化剂合成和测试的高通量方法是探索这种广泛设计空间的理想方法,包括前体类型,过渡金属载荷和热解温。在Argonne国家实验室的高通量研究实验室中合成了一系列这些材料,并通过各种先进的分析技术,包括扫描透射电子显微镜(Stew)。低压,像差校正的杆与光谱技术偶联,以量化每种催化剂的形态的原子垢差异。这些高度局部测量的测量与X射线技术耦合,包括X射线光电子体光谱和X射线吸收光谱,以实现更完整的结构性能的视图,这些结构性能影响肿块活性和耐久性以及实现这种结构的合成条件。将呈现这些结果,随着新的茎成像方式和组合技术来加速吞吐量的应用。这项工作得到了美国能源,能源效率和可再生能源部的支持,燃料电池技术办公室在电遗传联盟(电池)下。作为ORNL纳米纳比材料科学中心(CNMS)的用户项目的一部分进行了显微镜,这是一个科学用户设施的DOE办事处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号