首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Revealing the Nanoscale Dynamics of the Extracellular Space in the Living Brain
【24h】

Revealing the Nanoscale Dynamics of the Extracellular Space in the Living Brain

机译:揭示活脑中细胞外空间的纳米级动态

获取原文
获取外文期刊封面目录资料

摘要

The brain is a highly dynamic structure with the extracellular space taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the extracellular space, which constitutes a key microenvironment for cellular communication and clearance of toxic metabolites. Nevertheless, the extracellular space has not been characterized in detail in intact living samples because of the lack of appropriate tools allowing its study. Recent technological advances enhancing the luminescence properties and biocompatibility of carbon nanotubes opened the door to super-resolution imaging in the near-infrared in vivo. The luminescence efficiencies of single carbon nanotubes excited via various excitation strategies were compared and optimized for tissue imaging (e.g., targeting various excitonic transitions and through upconversion). The effects of tissue scattering, absorption, autofluorescence, and temperature increase induced by excitation light were systematically examined. Using carbon nanotube tracking, we revealed the hidden structure and viscoelastic properties of the extracellular space of brain slices. Local morphological and viscosity maps of the extracellular space of brain acute slices were reconstructed. A diversity of extracellular space dimensions down to ~40 nm and local viscosity maps were obtained. The rheological properties of the extracellular space are affected by chemical alterations of the extracellular matrix of the brains of live animals. Interestingly, these alterations are local and highly inhomogeneous in space. Probing the viscoelastic properties of the extracellular space is paramount to understand the spatiotemporal dynamics that regulate the cellular mechanisms ultimately influencing fundamental aspects of cell biology. These technological advances constitute the first milestone to generate super-resolution microscopy applications in the near-infrared to investigate live biological samples in situ.
机译:大脑是一种高度动态的结构,细胞外空间占据其体积的几乎四分之一。信号分子,神经递质和营养素通过细胞外空间过渡,这构成了用于细胞通信和毒性代谢物的间隙的关键微环境。然而,由于缺乏适当的工具,缺乏允许其研究的适当工具,细胞外空间尚未详细描述。最近的技术进步增强了碳纳米管的发光性能和生物相容性,在体内近红外线的超分辨率成像开门。比较通过各种激发策略激发的单碳纳米管的发光效率,并优化用于组织成像(例如,靶向各种激进过渡和通过上变化)。系统地检查了激发光诱导的组织散射,吸收,自发荧光和温度增加的影响。采用碳纳米管跟踪,我们揭示了脑切片细胞外空间的隐藏结构和粘弹性。重建了脑急性切片细胞外空间的局部形态学和粘度图。获得了低至约40nm和局部粘度图的细胞外空间尺寸的多样性。细胞外空间的流变性质受到活体大脑细胞外基质的化学改变的影响。有趣的是,这些改变是局部和高度不均匀的空间。探测细胞外空间的粘弹性是最重要的,了解调节细胞机制最终影响细胞生物学的基本方面的时空动态。这些技术进步构成了在近红外产生超分辨率显微镜应用的第一个里程碑,以调查现场生物样品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号