首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Origin of Intergranular Li Metal Propagation in Garnet-Based Solid Electrolyte By Direct Electronic Structure Analysis and Performance Improvement By Bandgap Engineering
【24h】

Origin of Intergranular Li Metal Propagation in Garnet-Based Solid Electrolyte By Direct Electronic Structure Analysis and Performance Improvement By Bandgap Engineering

机译:通过直接电子结构分析和带隙工程的性能改进,基于石榴石的固体电解质中的晶间Li金属繁殖的起源

获取原文

摘要

Garnet-structured oxide electrolyte (Li_7La_3Zr_2O_(12), LLZO) has the significant advantage of being chemically and electrochemically stable against Li metal, which allows the implementation of Li metal batteries. However, a short-circuit failure by Li penetration through the LLZO electrolyte has remained a crucial issue for safety and is a major hurdle for Li-based batteries to overcome. Here, we investigate the mechanism of Li dendrite formation for the crystalline Ta-doped LLZO (LLZTO) by examining their energy band structures and defect states using reflection electron energy loss spectroscopy (REELS), scanning photoelectron microscopy (SPEM), and nanoscale charge-based deep level transient spectroscopy (Nano Q-DLTS) techniques. The experimental results reveal that the Schottky barrier height (SBH) was lowered by 0.5 eV due to the defect states localized in grain boundaries and the metallic Li propagation along the grain boundaries is caused by the SBH reduction. Based on the analytical results, the laser annealing of LLZTO was performed as a bandgap engineering method to suppress the Li dendrite formation by forming a mixed surface layer of amorphous LLZTO and Li_2O, which has a wide bandgap to block the electron injection into the grain boundaries. The electrochemical measurements for the laser treated LLZTO demonstrate that the stability and cycling performance are significantly improved. This study sheds light on the importance of electronic structure, in particular, defect states to develop high performance oxide solid electrolytes for Li metal batteries and the practicality of surface modification by laser treatment.
机译:石榴石结构氧化物电解质(Li_7la_3zR_2O_(12),LLZO)具有化学和电化学稳定对LI金属的显着优势,这允许实施LI金属电池。然而,通过LLZO电解质的LI渗透的短路故障仍然是安全的关键问题,是锂基电池的主要障碍。在这里,我们通过使用反射电子能量损失光谱(卷轴),扫描光电子显微镜(SPEM)和纳米级电荷,研究通过检查它们的能带结构和缺陷状态来研究晶体TA掺杂LLZO(LLZTO)对晶体Ta掺杂的LLZO(LLZTO)的机制。基于深层瞬态光谱(纳米Q-DLTS)技术。实验结果表明,由于晶界局部局部化的缺陷状态,并且沿着晶界沿着晶界的金属Li传播是由SBH的减少引起的,因此肖特基势垒高度(SBH)降低了0.5eV。基于分析结果,通过形成无定形LLZTO和Li_2O的混合表面层来抑制Li Dendrite形成的带隙工程方法,使L1S20具有宽带隙来抑制Li Dendrite的激光退火。 。激光处理的LLZTO的电化学测量结果表明,稳定性和循环性能显着提高。本研究揭示了电子结构的重要性,特别是缺陷状态,以激光处理为Li金属电池开发高性能氧化物固体电解质和表面改性的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号