首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >(Invited) Titania Inverse-Opal Photonic Crystals Incorporating Gold Nanoparticles in Void Spaces for Photoabsorption Enhancement
【24h】

(Invited) Titania Inverse-Opal Photonic Crystals Incorporating Gold Nanoparticles in Void Spaces for Photoabsorption Enhancement

机译:(被邀请的)二氧化钛反蛋白石光子晶体在空隙空间中掺入空隙空间中的金纳米颗粒

获取原文

摘要

Designing of three-dimensional (3D) materials such as inverse-opal (IO) photonic crystals (PCs) has been identified as an effective pathway to enhance light harvesting to longer electromagnetic absorption regions such as visible and infrared. IO PCs exhibit photonic band gap (PBG) and this band structure predicts the translation of photons with reduced velocity, namely as slow photons at certain crystallographic directions. The photonic effect from titania (TiO_2)-1O structure was reported to enhance light-material interactions thus allowing better absorption of light at the wavelength at which the materials absorb poorly. On the other hand, utilization of gold-nanoparticles (Au-NPs) on TiO_2 could aid in charge separation and play its role as an amplifier for visible-light absorption due to its effects originating from localized surface plasmon resonance (LSPR). In this study, TiO_2-IO PC with incorporated gold nanoparticles (Au-NPs) per void space was developed by implementing five important steps to achieve a good quality of TiO_2-IO structure. Both photonic effects due to the slow photons in TiO_2-IO structure and LSPR effects contributed by Au-NPs were expected to give visible-light absorption by the photocatalyst material.
机译:已经鉴定为诸如反蛋白石(IO)光子晶体(PC)的三维(3D)材料的设计作为有效的途径,以增强光收集到更长的电磁吸收区域,例如可见和红外线。 IO PCS表现出光子带隙(PBG),并且该频带结构预测光子的转换,其速度降低,即在某些晶形方向上的慢光子。据报道,二氧化钛(TiO_2)-1O结构的光子效应来增强轻质材料相互作用,从而允许在材料吸收不良的波长处更好地吸收光。另一方面,在TiO_2上的金纳米颗粒(Au-NP)的利用可以有助于电荷分离,并发挥其作用作为由于其源自局部表面等离子体共振(LSPR)的效果而获得可见光吸收的放大器。在本研究中,通过实施五个重要步骤来实现每个空隙空间的掺入金纳米颗粒(AU-NP)的TiO_2-IO PC,以实现良好的TiO_2-IO结构。由于TiO_2-IO结构慢的光子和由AU-NPS所贡献的LSPR效应引起的光子效应被预期通过光催化剂材料得到可见光的吸收。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号