首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >(Invited) Optimizing 2D Material-Based Electrodes for Electrochemical Energy and Conversion Devices
【24h】

(Invited) Optimizing 2D Material-Based Electrodes for Electrochemical Energy and Conversion Devices

机译:(邀请)优化用于电化学能量和转换装置的2D基于材料的电极

获取原文

摘要

Electrochemical energy storage (EES) and conversion devices (e.g. batteries, supercapacitors, and reactors) are emerging as primary methods for global efforts to shift energy dependence from limited fossil fuels towards sustainable and renewable resources. These electric-based devices, while showing great potential for meeting some key metrics set by conventional technologies still face significant limitations. For example, an EES device tends to exhibit large energy density (e.g. lithium-ion battery) or power density (e.g. supercapacitor), but not both. This inability of a single device to simultaneously achieve both metrics represents a major obstacle to widespread adoption of EES devices. Improvements in materials, such as the integration of 2D materials (e.g. graphene, dichalcogenides, MXene, etc.) into electrochemical devices has yielded some exciting results towards tackling this issue, but significant improvements are still needed. Our approach to simultaneously achieving high energy and power density is to focus on one of the fundamental processes that occur in these systems: mass (or charge) transport. The efficient transport of ions within EES devices is critical to realizing both large power and energy densities. The pore structure of the electrode is a key factor in determining this transport phenomena, but in many cases, engineering the pore structure in a highly deterministic fashion is not pursued or even possible for many electrode materials. In this work, we explore a number of additive manufacturing methods (e.g. direct ink write, projection microstereolithography, etc.) to engineer the pore structure of device electrodes. We also determine effective electrode geometries using both simple theory and topology optimization techniques. The topology optimization couples the solution of the forward electrochemical problem over the full electrode domain with gradient-based optimization. The output of our code is a three-dimensional CAD representation which optimizes over specific performance metrics and which can be used to print functional electrodes. This work provides a systematic path toward automatic design and fabrication of engineered electrodes with precise control over the fluid and species distribution.
机译:电化学能量存储(EES)和转换装置(例如电池,超级电容器和反应堆)是作为全球努力从有限的化石燃料转变为可持续和可再生资源的主要努力的主要方法。这些基于电动的设备,同时显示出满足传统技术设定的一些关键指标的巨大潜力仍然面临着显着的限制。例如,EES装置倾向于表现出大的能量密度(例如锂离子电池)或功率密度(例如超级电池),但并不是两者。这种单一设备无法同时实现两个度量的这种功能代表了广泛采用EES设备的主要障碍。材料的改进,例如将2D材料(例如石墨烯,二甲烷基化物,MXENE等)进入电化学装置的一致性结果,旨在解决这个问题,但仍然需要显着的改进。我们同时实现高能量和功率密度的方法是专注于这些系统中发生的基本过程之一:质量(或充电)运输。 EES器件内离子的有效运输对于实现大功率和能量密度至关重要。电极的孔结构是确定该运输现象的关键因素,但在许多情况下,在许多电极材料中不遵循甚至可能以高度确定的方式工程孔隙结构。在这项工作中,我们探索了许多添加剂制造方法(例如,直接墨水写入,投影微管状光刻等),以工程师设计装置电极的孔结构。我们还使用简单的理论和拓扑优化技术确定有效电极几何形状。拓扑优化在具有基于梯度的优化的整个电极结构域上耦合了前向电化学问题的解决方案。我们的代码的输出是三维CAD表示,其优化了特定的性能度量,并且可用于打印功能电极。这项工作提供了一种系统的探讨,用于自动设计和制造工程电极,精确控制流体和物种分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号