首页> 外文学位 >Modeling of electrochemical energy storage and energy conversion devices.
【24h】

Modeling of electrochemical energy storage and energy conversion devices.

机译:电化学储能和能量转换装置的建模。

获取原文
获取原文并翻译 | 示例

摘要

With increasing interest in energy storage and conversion devices for automobile applications, the necessity to understand and predict life behavior of rechargeable batteries, PEM fuel cells and super capacitors is paramount. These electrochemical devices are most beneficial when used in hybrid configurations rather than as individual components because no single device can meet both range and power requirements to effectively replace internal combustion engines for automobile applications. A system model helps us to understand the interactions between components and enables us to determine the response of the system as a whole. However, system models that are available predict just the performance and neglect degradation. In the first part of the thesis, a framework is provided to account for the durability phenomena that are prevalent in fuel cells and batteries in a hybrid system. Toward this end, the methodology for development of surrogate models is provided, and Pt catalyst dissolution in PEMFCs is used as an example to demonstrate the approach. Surrogate models are more easily integrated into higher level system models than the detailed physics-based models. As an illustration, the effects of changes in control strategies and power management approaches in mitigating platinum instability in fuel cells are reported. A system model that includes a fuel cell stack, a storage battery, power-sharing algorithm, and dc/dc converter has been developed; and preliminary results have been presented. These results show that platinum stability can be improved with only a small impact on system efficiency. Thus, this research will elucidate the importance of degradation issues in system design and optimization as opposed to just initial performance metrics.;In the second part of the thesis, modeling of silicon negative electrodes for lithium ion batteries is done at both particle level and cell level. The dependence of the open-circuit potential curve on the state of charge in lithium insertion electrodes is usually measured at equilibrium conditions. Firstly, for modeling of lithium-silicon electrodes at room temperature, the use of a pseudo-thermodynamic potential vs. composition curve based on metastable amorphous phase transitions with path dependence is proposed. Volume changes during lithium insertion/de-insertion in single silicon electrode particle under potentiodynamic control are modeled and compared with experimental data to provide justification for the same. This work stresses the need for experiments for accurate determination of transfer coefficients and the exchange current density before reasoning kinetic hysteresis for the potential gap in Li-Si system. The silicon electrode particle model enables one to analyze the influence of diffusion in the solid phase, particle size, and kinetic parameters without interference from other components in a practical porous electrode. Concentration profiles within the silicon electrode particle under galvanostatic control are investigated. Sluggish kinetics is established from cyclic voltammograms at different scan rates. Need for accurate determination of exchange current density for lithium insertion in silicon nanoparticles is discussed. This model and knowledge thereof can be used in cell-sandwich model for the design of practical lithium ion cells with composite silicon negative electrodes. Secondly, galvanostatic charge and discharge of a silicon composite electrode/separator/ lithium foil is modeled using porous electrode theory and concentrated solution theory. Porosity changes arising due to large volume changes in the silicon electrode with lithium insertion and de-insertion are included and analyzed. The concept of reservoir is introduced for lithium ion cells to accommodate the displaced electrolyte. Influence of initial porosity and thickness of the electrode on utilization at different rates is quantitatively discussed. Knowledge from these studies will guide design of better silicon negative electrodes to be used in dual lithium insertion cells for practical applications.
机译:随着人们对汽车应用中的能量存储和转换设备的兴趣日益浓厚,了解和预测可充电电池,PEM燃料电池和超级电容器的寿命行为变得至关重要。这些电化学装置在混合配置而不是作为单独的组件使用时最有利,因为没有任何一种装置可以同时满足范围和功率要求,从而无法有效地替代汽车用内燃机。系统模型可帮助我们了解组件之间的相互作用,并使我们能够确定整个系统的响应。但是,可用的系统模型仅预测性能而忽略了性能下降。在论文的第一部分中,提供了一个框架来解决混合动力系统中燃料电池和电池中普遍存在的耐久性现象。为此,提供了开发替代模型的方法,并以PEMFC中的Pt催化剂溶解为例来说明该方法。与基于物理的详细模型相比,替代模型更容易集成到更高级别的系统模型中。作为说明,报告了控制策略和电源管理方法的变化对减轻燃料电池中铂不稳定的影响。已经开发出包括燃料电池堆,蓄电池,功率共享算法和dc / dc转换器的系统模型。并提出了初步结果。这些结果表明,铂稳定性可以提高,而对系统效率的影响很小。因此,本研究将阐明退化问题在系统设计和优化中的重要性,而不仅仅是最初的性能指标。;在论文的第二部分中,对锂离子电池的硅负极在颗粒级和电池级进行了建模。水平。通常在平衡条件下测量锂插入电极中开路电势曲线对电荷状态的依赖性。首先,在室温下对锂硅电极进行建模时,提出了一种基于亚稳态非晶态相变且具有路径依赖性的拟热力学势对组成曲线的使用方法。对锂在电动势控制下单硅电极颗粒中插入/脱嵌期间的体积变化进行建模,并与实验数据进行比较以证明其合理性。这项工作强调需要进行实验,以便在对锂硅系统中的势垒进行动力学滞后推理之前,准确确定转移系数和交换电流密度。硅电极颗粒模型使人们能够分析固相扩散,粒径和动力学参数的影响,而不受实际多孔电极中其他组分的干扰。研究了在恒电流控制下硅电极颗粒内的浓度分布。由循环伏安图以不同的扫描速率建立缓慢的动力学。讨论了对于锂在硅纳米颗粒中插入的交换电流密度的准确测定的需求。该模型及其知识可用于电池夹心模型中,以设计具有复合硅负极的实际锂离子电池。其次,利用多孔电极理论和浓溶液理论对硅复合电极/隔膜/锂箔的恒电流充放电进行了建模。包括并分析了由于锂电极的大量体积变化以及锂插入和去插入而导致的孔隙率变化。引入用于锂离子电池的储存器的概念以容纳置换的电解质。定量讨论了初始孔隙率和电极厚度对不同使用率的影响。这些研究的知识将指导在实际应用中用于双锂插入电池的更好的硅负极的设计。

著录项

  • 作者

    Chandrasekaran, Rajeswari.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号