首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Study of Mn(III) Disproportionation Reaction Using Vanadium and Titanium Additives: Application to Redox Flow Batteries
【24h】

Study of Mn(III) Disproportionation Reaction Using Vanadium and Titanium Additives: Application to Redox Flow Batteries

机译:使用钒和钛添加剂的Mn(III)歧化反应研究:在氧化还原流电池中的应用

获取原文

摘要

Manganese, an earth-abundant transition metal, exists as Mn(III)/Mn(II) redox couple at a standard potential of +1.51V vs. SHE. It has drawn interest for implementation as positive side in V/Mn redox flow battery (RFB) due to higher achievable energy density than all-vanadium RFB. Unfortunately, Mn(III) disproportionation into Mn(II) and MnO_2(s) led to loss of capacity, pressure drop increase and passivation of electrode surface during RFB cycling. We studied the influence of Ti(IV) or V(V) additives on Mn(III) stability in high acidic medium, by formulating 4 different electrolytes at equimolar ratio (Mn, Mn:Ti, Mn:V:Ti, Mn:V). Electrochemical characterizations reveals Mn(III) involvement in a complex nucleation/growth process at the electrode surface, along with its disproportionation. SEM combined to XPS demonstrates different oxide layers morphologies and chemical nature: MnO_2 was formed in the presence of Mn and Mn:Ti, and MnO in the presence of V(V). Spectroelectrochemical study of Mn electrolytes highlights the displacement of the disproportionation reaction equilibrium in the presence of Ti(IV) or V(V) additives. Below 10% of electrolyzed Mn(III) was involved in the disproportionation reaction in the presence of Ti(IV) and V(V) (e.g., 25% without additives). V(V) was observed to enhance the stability of Mn(III) as compared to Ti(IV), which is of high interest for redox flow battery applications. In fact, Mn:V electrolyte could be used instead of Mn:Ti as the positive side of a Mn-V RFB will considerably reduce cross-contamination issues. As observed in the spectroelectrochemical study, the battery might be charged up to 90% SOC without loss of capacity. Moreover, in case of MnO particles formation, the strong acidic conditions will directly dissolve the particles preventing the battery from electrode passivation or/and pressure drop concerns.
机译:锰,一种地球过渡金属,存在于+ 1.51V的标准潜力的Mn(III)/ MN(II)氧化还原耦合。由于可实现的能量密度高于全钒RFB,它已经吸引了v / mn氧化还原流量电池(RFB)的正面。遗憾的是,Mn(III)歧化为Mn(II)和MnO_2,导致容量损失,压降在RFB循环期间电极表面的钝化和电极表面的钝化。通过在等摩尔比(Mn,Mn:Ti,Mn:V:Ti,Mn:V:Ti,Mn:V. )。电化学表征揭示了Mn(III)的涉及在电极表面的复杂成核/生长过程中,以及其歧化。 SEM结合到XPS证明了不同的氧化物层形态和化学性质:MnO_2在Mn和Mn:Ti存在下形成,MnO在V(V)存在下。 Mn电解质的光谱电化学研究突出了Ti(IV)或V(V)添加剂存在的歧化反应平衡的位移。在Ti(IV)和V(例如,没有添加剂的25%)存在下,涉及10%的电解Mn(III)涉及歧化反应。与Ti(IV)相比,观察到增强Mn(III)的稳定性,这对于氧化还原流电池应用具有高兴趣。实际上,可以使用Mn:V电解质代替Mn:Ti,因为Mn-V RFB的正侧将显着降低交叉污染问题。如在光谱电化学研究中所观察到的,电池可能会充电高达90%的SOC,而不会损失容量。此外,在MNO颗粒的形成情况下,强酸性条件将直接溶解防止电池电极钝化或/和压降问题的颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号