首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >The Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries
【24h】

The Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries

机译:阳极滑动对富锂离子电池阴极切断电位和降解机制的影响

获取原文
获取外文期刊封面目录资料

摘要

High energy-density Li-ion batteries based on Ni-rich layered cathodes are the state-of-the-art technologies for electric vehicles. However, batteries using these advanced cathode materials suffer from rapid performance fading and the underlying mechanisms are not fully understood. In this work, we report a critical turning point during the aging of graphite/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2 (NMC811) full cells after which the degradation is significantly accelerated. This turning point is identified using differential voltage analysis (DVA) applied to standard two-electrode full cell data, which shows a decreased capacity usage of the graphite with cycle number. The graphite becomes progressively less lithiated, as confirmed by operando long-duration X-ray diffraction, and therefore has higher electrochemical potential when the cell has reached the end of charge. As the upper cutoff voltage of the full cell is fixed, this increase leads to a proportional raise of the cathode potential and an accelerated impedance increase is observed from this point. This mechanism is expected to be universal for the vast majority of today's Li-ion battery chemistries, particularly for Ni-rich cathodes whose degradation is shown to be extremely sensitive to the upper cutoff voltage, and our work provides fundamental guidelines for developing effective countermeasures.
机译:基于Ni的分层阴极的高能量密度锂离子电池是电动车辆的最先进的技术。然而,使用这些先进的阴极材料的电池患有快速性能衰落,并且潜在的机制尚未完全理解。在这项工作中,我们在石墨/ LINI_(0.8)MN_(0.1)CO_(0.1)CO_(0.1)O_2(NMC811)的全细胞老化期间报告了一个关键转折点,之后劣化会显着加速。使用差分电压分析(DVA)识别该转折点,该差分电压分析(DVA)施加到标准的双电极全单元数据,其显示具有循环编号的石墨的容量使用率降低。如Orperando长持续时间X射线衍射所确认的,石墨变得逐渐减少,因此当电池达到电荷结束时具有更高的电化学潜力。随着全电池的上截止电压固定,该增加导致正极电位的比例升高,从该点观察到加速阻抗增加。这项机制预计将成为当今绝大多数锂离子电池化学物质的普遍性,特别是对于富力的阴极,其降解显示对上截止电压非常敏感,我们的工作提供了发展有效对策的基本指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号