首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >(Invited) Composition and Interfacial Engineering of Lithium Iron Orthosilicate Cathodes with Superior Intercalation Properties
【24h】

(Invited) Composition and Interfacial Engineering of Lithium Iron Orthosilicate Cathodes with Superior Intercalation Properties

机译:(邀请的)锂锂锂硅酸锂阴极的组成和界面工程,具有优异的嵌入性能

获取原文

摘要

The quest for Li-ion batteries (LIBs) delivering higher energy density while being safer and sustainable has intensified recently. This work presents our advances towards improving the intercalation properties of an important cathode material, Li_2FeSiO_4(LFS), in order to take advantage of its attractive properties in terms of sustainability and safety. LFS theoretically has 330 mAh g~(-1) capacity (2 Li~+ per formula unit), however, inherently it exhibits relatively poor Li-ion intercalation kinetics, interfacial reactivity and complex phase transitions resulting in lower than one Li~+ storage and poor capacity retention. In this work, we apply a multi-prong strategy to overcome these obstacles making use of compositional engineering to tune the electronic and crystal structures of LFS in concert withmechanochemical processing and polymer coating to provide a stabilizing interphase. We take advantage of the versatility of hydrothermal synthesis [1a] and mechanochemical activation and synthesize various cation-substituted and non-stoichiometric LFS nanomaterials with annealed orthorhombic Pmn2_1structure. Firstly, mechanochemical annealing leads to activation of Li-ion diffusion (D_(Li)) by one order of magnitude enhancement [2a,b]. Secondly, partial substituting Co for Fe is found to allow faster phase transformation from pristine Pmn2_1 to inverse Pmn2_1 with important positive ramifications in its cycling performance [1b]. Thirdly, we boost the capacity of LFS, bydesigning Fe-rich (and not Li-rich!) LFS materials that deliver higher capacity within a reasonable voltage window [1c]. Lastly, PEDOT coating and near the surface composition alteration allows for stable cycling performance with >1.2 Li capacity [2c].
机译:最近加剧了对锂离子电池(Libs)的追求,同时更安全,可持续发展。这项工作提出了改善重要阴极材料的嵌入性质Li_2Fesio_4(LFS)的进步,以便在可持续性和安全方面利用其有吸引力的特性。理论上,理论上有330mAh g〜(-1)容量(每配方单元2 Li + +),此处固有地表现出相对较差的锂离子插入动力学,界面反应性和复杂相转变,导致低于一个Li +储存和差的能力保留。在这项工作中,我们应用了一种多尖战略来克服这些障碍,利用组合工程来调整音乐会化学加工和聚合物涂层的音乐会中LFS的电子和晶体结构,以提供稳定的间相。我们利用水热合成[1A]和机械化学活化的多功能性,并用退火的正交PMN2_1结构合成各种阳离子取代和非化学计量LFS纳米材料。首先,通过一种幅度增强(D_(Li))通过一种幅度增强来激活Li离子扩散(D_(Li))的激活[2a,b]。其次,发现部分取代的FO用于Fe,以允许从原始PMN2_1转化为逆pMn2_1,在其循环性能下具有重要的阳性后果[1b]。第三,我们提高了LFS的能力,通过设计Fe-Rich(而不是锂富人!)LFS材料,在合理的电压窗口[1c]中提供更高容量的材料。最后,PEDOT涂层和近表面组成改变允许稳定的循环性能,具有> 1.2 LI容量[2c]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号