首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Predicting Electrolyte Performance in Lithium Metal Batteries at Low and High Current Densities
【24h】

Predicting Electrolyte Performance in Lithium Metal Batteries at Low and High Current Densities

机译:在低温和高电流密度下预测锂金属电池中的电解质性能

获取原文

摘要

For lithium metal batteries to surpass graphite-based lithium ion batteries as the standard for advanced applications, electrolytes must be designed to 1) stabilize the lithium metal anode and high-voltage cathode and 2) facilitating ion transport at fast rates. Composite electrolyte systems (e.g. a glassy polymer or nanoparticle dispersed in an ion-conducting medium) have frequently been proposed in an effort to fulfill the first design principle; however, it is often not clear if the second design principle can be met. Ultimately, the performance of new electrolytes should be based on comprehensive cycling experiments in full-cell configurations. Practically, we would like to leverage simple characterization techniques in order to predict full-cell performance and allow design iteration more quickly. In this talk, we will discuss experiments utilizing symmetric cell configurations (i.e. lithium/electrolyte/lithium) which can be used to predict electrolyte performance in a battery. For applications requiring small applied currents, the product of the ionic conductivity, k, and the current fraction, p_+, can be used to evaluate electrolyte efficacy and can be measured in a simple polarization experiment in a symmetric cell. This method is well established, and we have compiled data from the literature which reveals a tradeoff between the two parameters. For applications requiring large current densities, the problem is more complicated, especially for composite electrolytes where many parameters (six or more) are required to fully define ion transport. We have applied an approximation to Newman's concentrated solution theory to define ion transport in a block copolymer electrolyte system (polystyrene-block-polyethylene oxide with LiTFSI) with only three transport parameters. We will discuss the results and predictions made by the theory and compare the predictions to experimental data. Our approach to characterize electrolyte performance at low and high current densities can be broadly applied to any electrolyte which can be studied in a symmetric cell configuration.
机译:对于锂金属电池超越石墨的锂离子电池作为先进应用的标准,电解质必须设计为1)稳定锂金属阳极和高压阴极和2)以快速速度促进离子输送。复合电解质系统(例如,分散在离子导电介质中的玻璃状聚合物或纳米颗粒)经常提出努力实现第一个设计原理;但是,如果可以满足第二种设计原则,通常往往是不明确的。最终,新电解质的性能应基于全细胞配置中的综合循环实验。实际上,我们希望利用简单的表征技术,以预测全部细胞性能并更快地设计迭代。在这次谈话中,我们将讨论利用对称电池配置(即锂/电解质/锂)的实验,其可用于预测电池中的电解质性能。对于需要小施加电流的应用,离子电导率,K和电流级分的乘积可以用于评估电解质功效,并且可以在对称细胞中的简单偏振实验中测量。该方法已建立很好,我们已经从文献中编制了数据,揭示了两个参数之间的权衡。对于需要大电流密度的应用,问题更加复杂,特别是对于需要许多参数(六个以上)的复合电解质来完全定义离子输送。我们已经应用于Newman集中的解决方案理论的近似,以限定嵌段共聚物电解质系统(用LITFSI的聚苯乙烯 - 嵌段 - 聚环氧乙烷)中的离子转运,只有三种传输参数。我们将讨论该理论的结果和预测,并将预测与实验数据进行比较。我们在低和高电流密度下表征电解质性能的方法可以广泛地应用于可以在对称电池配置中研究的任何电解质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号