首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >In Situ FTIR Study on Organo-Polysulfide Evolution in CNF/Sulfur-Copolymer Cathodes for Li-S Batteries: Effect of Sulfur Chain Length on the Electrochemical Performance
【24h】

In Situ FTIR Study on Organo-Polysulfide Evolution in CNF/Sulfur-Copolymer Cathodes for Li-S Batteries: Effect of Sulfur Chain Length on the Electrochemical Performance

机译:原位FTIR对LI-S电池CNF /硫共聚物阴极有机多硫化物进化的研究:硫链长对电化学性能的影响

获取原文

摘要

Lithium-Sulfur batteries offer five times more energy density compared to conventional Li-ion batteries. However, there are challenges related to long term cycling of these batteries. Recently, we synthesized a sulfur-rich copolymer/carbon nanofiber cathode material for Li-S batteries. The formation of a C-S bond in these sulfur-rich copolymers results in the formation of organo-lithium polysulfides (OPs), instead of lithium polysulfides (PS). In the present work, we demonstrate in situ FTIR spectroscopy as a tool to investigate the C-S bond and lithium polysulfide evolution in sulfur-rich copolymer-based Li-S batteries. The copolymer is synthesized using inverse vulcanization reaction, where sulfur powder reacts with a monomer, here 1,3-diisopropenylbenzene (DIB), at high temperatures. In this study, we varied the DIB monomer concentration and three samples with differen sulfur/DIB wt% were synthesized. Figure 1 shows the cyclic voltammetry (CV) obtained using the three different cathodes. As it can be seen from this fugure two reduction peaks at ~2.3 and 2 V represent the formation of higher and lower order Ps and OPs. However, with further increase in DIB concentration, the first reduction peak at ~2.3V disappears. We hypothesize that the disappearance of the first reduction peak can be attributed to the existence of short sulfur chain length. To investigate the hypothesis, an in situ cell consisted of two different cathodes, one cathode with a low (sample 1) and another with a high DIB wt% (sample 2), were built on the FTIR to simultaneously collect IR spectra and CVs. Our results show that the C-S bond located at ~695 cm~(-1) in sample 1 shifts to higher wavenumbers (~705cm~(-1)) as we discharge the cell. The shift to higher wavenumbers shows that the formation of OPs, strengthens the C-S bonds which originates from having Li, with lower electronegativity (0.98 VS. 2.58), instead of S. However, when we tested the sample 2 cell, the C-S cyclic shift, happens between ~704 to ~706 cm~(-1), only. The smaller C-S peak shift in sample 2 compared to sample 1 is attributed to the existence of the short chain length sulfur.
机译:与传统的锂离子电池相比,锂 - 硫磺电池提供了5倍的能量密度。然而,与这些电池的长期循环有挑战。最近,我们合成了一种用于Li-S电池的富含硫的共聚物/碳纳米纤维正极材料。在这些富含硫的共聚物中形成C-S键导致有机锂多硫化物(OPS)的形成,而不是聚锂(PS)。在目前的工作中,我们以原位FTIR光谱证明作为研究C-S键和多硫化锂的基于基于共聚物的Li-S电池的工具。使用反相硫化反应合成共聚物,其中硫粉末在高温下与单体反应1,3-二异丙苯基苯(DIB)。在这项研究中,我们改变了DIB单体浓度,合成了三种具有不同硫/ dib%的样品。图1显示了使用三种不同阴极获得的循环伏安法(CV)。从这个福州可以看出,在〜2.3和2V的两个减少峰值代表较高和更低的PS和OPS的形成。然而,随着DIB浓度的进一步增加,在〜2.3V的第一抑制峰消失。我们假设第一减少峰的消失可归因于硫链长的存在。为了研究假设,在FTIR上建立了由两个不同的阴极组成的原位电池由两个不同的阴极,一个阴极,其中具有低Dibwt%(样品2),以同时收集IR光谱和CV。我们的结果表明,当我们排出电池时,样品1位于〜695cm〜(-1)的C-S键位移到更高的波数(〜705cm〜(-1))。转移到更高的波数表示OPS的形成,增强了源自具有Li的Cs键,具有较低的电负性(0.98 vs.258),而不是S。然而,当我们测试样品2细胞时,CS循环移位,恰好在〜704到〜706厘米〜(-1)之间。与样品1相比,样品2中较小的C-S峰值偏移归因于短链长度硫的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号