首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Facile Synthesis of Metastable Mg-Mn Spinel Nanoparticles for Magnesium-Ion Batteries
【24h】

Facile Synthesis of Metastable Mg-Mn Spinel Nanoparticles for Magnesium-Ion Batteries

机译:用于镁离子电池的亚稳Mg-Mn尖晶石纳米粒子的容易合成

获取原文

摘要

High energy and high density rechargeable batteries are indispensable for widespread portable electronic devices and the spreading of electric vehicles. Rechargeable Mg-ion batteries have gained much attention as promising alternatives to Li-ion batteries due to the high natural abundance, high volumetric energy density, and no dendrite formation of the Mg metal anode. While Mg-ion batteries are nowadays progressing rapidly, their practical use is still hampered by problems related to both cathode materials and electrolytes. One of the crucial problems is the very low rate capability at the cathodes due to the slow diffusion of Mg~(2+) ions in solids, therefore Mg-ion batteries work only at low current densities or at high temperature. Among various oxide cathode candidates for Mg-ion batteries, spinel oxides have a high redox potential and a relatively high ion-diffusivity. Especially in the common electrochemical window of electrolytes, MgMn_2O_4 spinel can exhibit a high theoretical capacity of 540 mAh g~(-1) using both Mn~(3+)/Mn~(4+) and Mn~(3+)/Mn~(2+) redox reactions (λ-MnO_2 formation and rock-salt Mg_2Mn_2O_4 formation reactions, respectively). However, these reactions should exhibit large polarizations because of the less reversible tetragonal-cubic phase transitions; MgMn_2O_4 has a tetragonal spinel structure due to the Jahn-Teller effect of Mn~(3+) ions, while λ-MnO_2 and Mg_2Mn_2O_4 are cubic phase. A suppression of the lattice distortion of MgMn_2O_4 is necessary for improving its cathode performance. Although a cubic MgMn_2O_4 phase is known as a metastable phase, this phase is only obtained at high-temperature or high-pressure in bulk. In this study, we aimed at synthesizing metastable cubic MgMn_2O_4 spinel nanoparticles under ambient conditions and applying them as cathodes for Magnesium-ion batteries.
机译:高能量和高密度可充电电池对于广泛的便携式电子设备和电动车辆的扩展是必不可少的。可充电的Mg-离子电池由于高自然丰度,高容量能量密度和Mg金属阳极的树突形成而导致锂离子电池的有前途的替代品。虽然如今,Mg-离子电池迅速进展,但它们的实际用途仍然受到与阴极材料和电解质相关的问题的阻碍。由于Mg〜(2+)离子在固体中的缓慢扩散,因此Mg离子电池仅在低电流密度或高温下工作,这是一个至关重要的问题。在用于Mg离子电池的各种氧化物阴极候选中,尖晶石氧化物具有高氧化还原电位和相对高的离子扩散率。特别是在电解质的常见电化学窗中,MgMN_2O_4尖晶石可以使用Mn〜(3 +)/ Mn〜(4+)和Mn〜(3 +)/ Mn具有540mAhg〜(-1)的高理论能力〜(2+)氧化还原反应(λ-mnO_2形成和岩盐Mg_2mN_2O_4形成反应)。然而,由于不可逆转的四方立方相过渡,这些反应应该表现出大的偏振; Mgmn_2O_4由于Mn〜(3+)离子的Jahn-Teller效果,而λ-mnO_2和Mg_2mN_2O_4是立方相的影响,Mgmn_2O_4具有四边形尖晶石结构。抑制MgMN_2O_4的晶格变形,对于改善其阴极性能是必要的。尽管立方MgMN_2O_4相位被称为亚稳阶段,但该阶段仅在散装的高温或高压下获得。在该研究中,我们旨在在环境条件下合成亚稳立方MgMn_2O_4尖晶石纳米粒子,并将它们施加为镁离子电池的阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号