首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Atomic Layer Deposition for Surface Area Characterization of Porous Solid Oxide Fuel Cell Electrodes and Beyond
【24h】

Atomic Layer Deposition for Surface Area Characterization of Porous Solid Oxide Fuel Cell Electrodes and Beyond

机译:用于多孔固体氧化物燃料电池电极的表面积表征的原子层沉积及超越

获取原文

摘要

Conventional surface area determination techniques are inadequate for calculating the surface areas of porous solids with absolute totals less than ~1 m~2, but with nm-scale feature sizes, such as state-of-the-art, lab-scale solid oxide fuel cell electrodes. Meaningful contextualization of their electrochemical performance requires knowing system surface area, but the two predominant classes of techniques, tomography and gas adsorption theory, either lack the resolution or require prohibitive amounts of material. Presented here is a new method for the accurate determination of absolute surface areas on the order of 1-1000 cm~2 with precision ±0.3 cm~2 utilizing atomic layer deposition (ALD) of commonly available trimethylaluminum (TMA) and water vapor to conformally deposit alumina over internal features. The area of alumina can then be quantified using plasma spectroscopy and the known nm-scale thickness of the layer. As a model system, scaffolds of La_(0.8)Sr_(0.2)MnO_(3-δ)/Ce_(0.9)Gd_(0.1)O_(2-δ) (LSM/GDC) of 2.6 m~2/g were measured under the new technique and compared against the B.E.T. method, with remarkably similar results obtained, but with ~1000 times less mass needed for the experiment. Under the modest ALD reactor soak times used (~10 s), and with conservative precursor pulse durations, the penetration depth of the coating was found to be ~50 μm, exceeding the requirement for the electrodes under study. To demonstrate the technique's capabilities further, the LSM/GDC scaffolds were infiltrated with PrO_x nanoparticles of ~50 nm, and the increase in surface area (+ ~25%) and enhanced electrochemical performance were measured. After annealing for 1000 hours at 700°C, both were again measured, and the surface area was found to have reverted to non-infiltrated levels, despite the infiltrated cells maintaining their higher performance. The technique, due to its ease versus other surface area determination methods and its pairing with an established analytical chemistry method, enables a useful combined chemical/morphological approach to the characterization of next-generation solid oxide cell electrodes, and may find other uses among nanostructured yet low absolute surface area systems in the broad field of heterogeneous catalysis.
机译:传统的表面积确定技术不充分,用于计算多孔固体的表面积,绝对总量小于〜1m〜2,但是具有Nm级特征尺寸,例如最先进的实验室固体氧化物燃料电池电极。其电化学性能的有意义的上下文化需要了解系统表面积,而是两种主要的技术,断层扫描和气体吸附理论,无论是缺乏分辨率,要么需要欠压量。这里提出是一种新方法,用于精确测定1-1000cm〜2的绝对表面区域,精度±0.3cm〜2利用常用的三甲基铝(TMA)和水蒸气的原子层沉积(ALD)。将氧化铝存放在内部特征上。然后可以使用等离子体光谱和层的已知的NM刻度厚度来定量氧化铝的区域。作为模型系统,测量了测量了2.6m〜2 / g的La_(0.8)Sr_(0.2)MnO_(3-Δ)/ CE_(0.9)GD_(0.1)O_(2-Δ)(LSM / GDC)的支架根据新技术并与赌注进行比较方法,获得了显着相似的结果,但实验所需的质量较小〜1000倍。在所用的适度ALD反应器浸泡时间(〜10秒),并具有保守前体脉冲持续时间,发现涂层的渗透深度为约50μm,超过研究下的电极的要求。为了进一步证明该技术的能力,将LSM / GDC支架用〜50nm的Pro_x纳米颗粒渗透,测量表面积(+〜25%)的增加和增强的电化学性能。在700℃下退火1000小时后,两者再次测量,并且发现表面积已恢复为非渗透水平,尽管渗透细胞保持更高的性能。该技术由于其缓解与其他表面积确定方法及其与已建立的分析化学方法的配对,使得有用的化学/形态学方法能够表征下一代固体氧化物电池电极,并且可以在纳米结构中找到其他用途然而,在异构催化的广场中的低绝对表面区域系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号