首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Development of High-Efficient Ion Selective Membrane Separator for Lithium Polysulfide Redox Flow Batteries
【24h】

Development of High-Efficient Ion Selective Membrane Separator for Lithium Polysulfide Redox Flow Batteries

机译:用于锂多硫化锂氧化还原电池的高效离子选择性膜分离器的研制

获取原文

摘要

As our society demands greater utilization of intermittent renewable energies from solar and wind, the development of a low cost, reliable energy storage technology with high energy density is of great interest. In particular, highly efficient large-scale electrochemical energy storage has been an important issue to enhance the efficiency and quality of electrical grid. Among many energy storage systems, lithium-polysulfide (Li-PS) redox flow batteries (RFBs) have been considered one of the most promising electrochemical storage systems because they can offer the high energy density of the Li-S batteries and the general features of RFBs (e.g. flexible system design from decoupled energy storage, a power generation, safer operation, long cycle life) simultaneously. To successfully adopt Li-PS RFBs for a large scale electrochemical storage technology, it is imperative that the membrane separator should prevent the crossover of redox-active materials between the electrodes which would otherwise result in low columbic efficiency, rapid capacity fading and poor cycle life. Recently, Bae group demonstrated that aromatic polymers based on biphenyl backbones have excellent chemical and mechanical stability and prevent crossover of redox-active materials for RFBs. In this work, we will present new, multifunctional, highly ion selective, biphenyl polymer (BPSA) with high ionic transport properties (Figure 1). The unique design of this polymer involves (1) a lithiated sulfonate group, (2) tunable hydrophobic polymer backbone, and (3) a hydrocarbon linker between them. The covalent connection of these two distinctively different moieties would lead to nanometer-scale phase separation between hydrophilic ion conducting channels (via aggregation of sulfonated groups) and hydrophobic polymer backbone domains. The BPSA membranes demonstrated resistance in swelling in the commonly used Li-S RFB solvent solution dioxolane/dimethoxyethane (15% in x-y direction) and achieved good mechanical properties (tensile strength ≥20 MPa, percentage elongation ≥50). In an effort to decrease the areal resistance and increase lithium conductivity of the polymer membranes, a variety of reinforcement materials such as poly(ethylene) (PE), polytetrafluoroethylene (PTFE), and Celgard were coated with a thin layer of BPSA. The low-cost, chemically inert, reinforcing materials provide additional mechanical strength and reduce the swelling ratio of BPSA, lowering the permeation rate of the polysulfide anions. Performance of these hydrocarbon cation exchange membranes in Li-S RFB with respect to the separation of polysulfides and conductivity are compared to the state-of-the-art cation exchange membrane Nafion, and will be discussed. A brief description of battery performance carried out by UIC will follow.
机译:由于我们的社会要求从太阳能和风中的间歇性可再生能源利用间歇性再生能源,因此具有高能量密度的低成本,可靠的能量存储技术的发展具有很大的兴趣。特别是,高效的大型电化学能量存储是提高电网的效率和质量的重要问题。在许多能量存储系统中,锂 - 多硫化物(Li-PS)氧化还原流量电池(RFB)被认为是最有前途的电化学存储系统之一,因为它们可以提供LI-S电池的高能量密度和一般特征RFB(例如柔性系统设计,从去耦能量存储,发电,更安全操作,长循环寿命)同时。为了成功采用LI-PS RFB进行大规模电化学存储技术,必须迫使膜分离器应防止电极之间的氧化还原活性材料的交叉,否则会导致低牙牙效率,快速容量衰落和循环寿命不佳。最近,BAE组表明,基于联苯基骨架的芳族聚合物具有优异的化学和机械稳定性,并防止RFBS的氧化还原活性材料的交叉。在这项工作中,我们将以高离子传输性能呈现新的多功能,高离子选择性联苯基聚合物(BPSA)(图1)。该聚合物的独特设计涉及(1)锂化的磺酸盐基团,(2)可调谐疏水聚合物主链,(3)它们之间的烃连接物。这两个明显不同部分的共价连接将导致亲水离子传导通道(通过磺化基团的聚集)和疏水性聚合物主链域之间的纳米级相分离。 BPSA膜在常用的Li-S RFB溶剂溶液二氧戊戊烷/二甲氧基乙烷(X-Y方向为15%)中表现出抗抗性,并实现了良好的机械性能(拉伸强度≥20MPa,百分比≥50)。为了降低聚合物膜的面积抗性和提高锂电片,涂有各种增强材料,例如聚(乙烯),聚四氟乙烯(PTFE)和Celgard含有薄的BPSA。低成本,化学惰性,增强材料提供额外的机械强度并降低BPSA的溶胀比,降低多硫化物阴离子的渗透率。将这些烃阳离子交换膜在LI-S RFB中相对于分离多硫化物和电导率的性能,与最先进的阳离子交换膜Nafion进行比较,并将讨论。 UIC执行的电池性能的简要说明将遵循。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号