首页> 外文学位 >Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery.
【24h】

Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery.

机译:硅沸石膜中分子和离子迁移的研究及其作为氧化还原液流电池的离子分离器的应用。

获取原文
获取原文并翻译 | 示例

摘要

Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates.;In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than the commercial Nafion 117 membrane. The high proton transport selectivity is a result of the molecular sieving effect between the H3O+ and multivalent vanadium ions by the zeolitic pores; thus the zeolite particles significantly reduced the effective membrane surface area for vanadium ion permeation. The low resistance of the composite membrane can be attributed to the reduced thickness of the Nafion base film and the thinness of the colloidal silicalite top layer. The composite membrane outperformed the Nafion 117 membrane in the vanadium RFB operation in terms of the overall charge-discharge energy efficiency.;Efforts have been made in further investigation of ion and molecular transport diffusivity in the polycrystalline silicalite film using zeolite-coated optical fiber interferometers. A physical model has been established for analyzing the molecular diffusivity in the zeolite layer based on the temporal responses of the optical interferometric signals during the transient process of molecular sorption. Experiments were first carried out to study the diffusivity of isobutane to evaluate the effectiveness of the proposed optical method. The isobutane diffusivities in silicalite measured by this method were in good agreement with the values reported in literature. The zeolite coated fiber optic interferometer was however ineffective in monitoring ion sorption or ion exchange in the silicalite films. It is suggested that more sensitive fiber optic devices are needed for studying the ion diffusion.
机译:基于尺寸排阻或优先吸附扩散机制,微孔沸石膜已被广泛用于分子分离。还通过分子筛作用证明了MFI型沸石膜可用于盐水脱盐。在这项研究中,首次证明了纯二氧化硅MFI型沸石(即硅沸石)膜可在酸性电解质溶液中选择性渗透水合质子(即H3O +)。硅沸石膜允许H 3O +离子渗透,但是由于空间效应,大型水合多价钒离子无法进入。硅沸石膜已被证明是全钒氧化还原液流电池(RFB)中的有效离子分离器。硅沸石是非离子的,其质子传导性取决于电场驱动下H3O +通过亚纳米孔下的亚纳米孔传输。 RFB操作条件。由于其高的质子-钒离子迁移选择性,硅沸石膜显示出明显降低的自放电速率。然而,硅沸石膜的非离子性质和非常小的扩散通道尺寸导致低的质子传导性,因此作为离子交换膜(IEM)在实际应用中效率低下。可以通过减小膜厚度来提高质子传输效率。然而,沸石薄膜极易碎,必须支撑在机械强度高且刚性的多孔基材上。在这项工作中,合成了硅沸石-Nafion复合膜以在Nafion薄膜基底上获得胶态硅沸石表皮。 “胶态沸石-离子聚合物”层状复合膜结合了沸石层的高质子选择性和离子聚合物膜的机械挠性和低质子传递阻力的优点。与商用Nafion 117膜相比,该复合膜表现出更高的质子/钒离子分离选择性和更低的电阻。高质子传递选择性是沸石孔在H3O +和多价钒离子之间进行分子筛作用的结果。因此,沸石颗粒显着降低了钒离子渗透的有效膜表面积。复合膜的低电阻可归因于Nafion基膜的厚度减小和胶体硅沸石顶层的薄度。就整体充放电能量效率而言,该复合膜的性能优于Nafion 117膜。在进一步研究使用沸石涂层光纤干涉仪的多晶硅质岩膜中离子和分子传输扩散率方面做出了努力。 。建立了一个物理模型,用于在分子吸附的瞬态过程中根据光学干涉信号的时间响应来分析沸石层中的分子扩散率。首先进行实验研究异丁烷的扩散率,以评估所提出的光学方法的有效性。用这种方法测量的硅沸石中异丁烷的扩散率与文献报道的值非常一致。然而,沸石涂覆的光纤干涉仪在监测硅沸石膜中的离子吸收或离子交换方面无效。建议需要更灵敏的光纤设备来研究离子扩散。

著录项

  • 作者

    Yang, Ruidong.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Chemical engineering.;Nanotechnology.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号