首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >(Invited) Electrostriction Driven Preferential Solvation Processes for Divalent Cations in Non-Aqueous Electrolytes
【24h】

(Invited) Electrostriction Driven Preferential Solvation Processes for Divalent Cations in Non-Aqueous Electrolytes

机译:(邀请的)电伸缩驱动的非水电解质中阳离子的优先溶剂化方法

获取原文

摘要

The strong electric field from divalent cations (i.e. Mg~(2+), Zn~(2+) and Ca~(2+)) can influence conformal structural evolution of organic solvent molecules and subsequently influence emergent properties of battery electrolyte solutions. This electrostriction process typically depends on the charge and size of the ion and on certain properties of the solvent such as molecular flexibility and permittivity. In this work, we focused on the effect of cationic size and structural flexibility of organic solvent molecules commonly used in multivalent batteries. In particular, we analyzed electrostriction driven preferential interactions that lead to contact-ion pair (CIP) and solvent separated ion pair (SSIP) formation in cyclic ether solvents such as tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran (2-MeTHF) and linear structured ether solvents such as glymes (G1 and G2). The concentration and temperature dependent preferential interactions of these electrolyte systems were analyzed using multinuclear (~1H, ~(19)F, ~(17)O, ~(25)Mg, ~(43)Ca, and ~(67)Zn) NMR spectroscopy and PFG-NMR diffusion measurement combined with classical MD and DFT based computational modeling. Our results show that the solvent-cation interaction is more favorable in the linear glyme-based electrolytes than in the cyclic THF-based electrolytes. In particular, the glyme-based solvents (G1 and G2) drive preferential dissociation of cation-anion pairs, resulting in a higher concentration of SSIPs in these multivalent electrolyte solutions. The correlation between such preferential solvation phenomena and emergent properties including conductivity and chemical stability will be discussed.
机译:二价阳离子的强电场(即Mg〜(2+),Zn〜(2+)和Ca〜(2+)可以影响有机溶剂分子的保形结构演变,随后影响电池电解质溶液的紧急性能。该电伸缩过程通常取决于离子的电荷和尺寸以及溶剂的某些性质,例如分子柔性和介电常数。在这项工作中,我们专注于多价电池中常用的阳离子尺寸和结构柔韧性的影响。特别地,我们分析了在环状醚溶剂如四氢呋喃(THF)和2-甲基 - 四氢呋喃(2-甲基)和2-甲基 - 四氢呋喃(2-甲基 - 四氢呋喃(2-甲基 - 四氢呋喃(2-甲基 - 四氢呋喃(2-甲基 - 四氢)和2-甲基 - 四氢呋喃(2-甲基)中导致的电致伸缩驱动的优先相互作用和溶剂分离离子对(SSIP)形成。线性结构醚溶剂如Glymes(G1和G2)。使用多核(〜1H,〜(19)F,〜(17)O,〜(25)Mg,〜(43),〜(67)Zn分析这些电解质系统的浓度和温度依赖性优先相互作用。 NMR光谱和PFG-NMR扩散测量与经典MD和基于DFT的计算建模相结合。我们的结果表明,溶剂 - 阳离子相互作用比在基于环状THF的电解质中的线性甘草电解质中更有利。特别地,基于Glyme的溶剂(G1和G2)驱动阳离子阴离子对的优先解离,导致这些多价电解质溶液中较高的SSIP。将讨论这种优先溶剂化现象与包括电导率和化学稳定性的紧急性能之间的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号