首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Photoelectrochemical Nitrogen Fixation for Ammonia Synthesis Using Hybrid Plasmonic Nanostructures
【24h】

Photoelectrochemical Nitrogen Fixation for Ammonia Synthesis Using Hybrid Plasmonic Nanostructures

机译:使用杂交等离子体纳米结构的氨合成的光电化学氮固定

获取原文

摘要

Cost-effective production of ammonia via (photo)electrochemical nitrogen reduction reaction (NRR) hinges on N_2 electrolysis at high current densities with suitable selectivity and activity. In this talk, we report our findings in electrochemical NRR for ammonia synthesis using porous bimetallic Pd-Ag nanocatalysts in both gas-phase and liquid-phase electrochemical cells at current densities above 1 mA cm~(-2) under ambient conditions. While the gas-phase cell has lower Ohmic losses and higher energy efficiency, the liquid-phase cell achieved higher selectivity and Faradaic efficiency, attributed to the presence of concentrated N_2 molecules dissolved in an aqueous electrolyte and the hydration effects. The liquid cell demonstrated notable performance for electrocatalytic NRR, achieving an NH_3 production rate of 45.6 μg cm~(-2) h~(-1) at a cathodic potential of -0.6 V (vs. RHE) and current density of 1.1 mA cm~(-2), corresponding to a Faradaic efficiency of ~19.6% and an energy efficiency of ~9.9%. Similarly, the gas-phase cell achieved an NH_3 yield rate of 19.4 μg cm~(-2) h~(-1) at -0.07 V (vs. RHE) and 1.15 mA cm~(-2) with a Faradaic efficiency of 7.9% and an energy efficiency of 27.1%. In addition, the photoelectrocatalytic activities of these hybrid plasmonic nanostructures under illumination and dark conditions will be explored and photocurrent and photovoltage responses will be reported. Operando surface-enhanced Raman spectroscopy (SERS) is used to identify the intermediate species relevant to NRR at the solid-liquid (electrode-electrolyte) interface. This work highlights the importance of design and optimization of cell configuration in addition to the modification of the catalyst to achieve high-performance N_2 electrolysis for ammonia synthesis. It also demonstrates the use of operando SERS as a powerful technique for unraveling reaction mechanisms for (photo)electrocatalytic phenomenon.
机译:在高电流密度下的高电流密度下,具有适当的选择性和活性的高电流密度对N_2电解的氨(Photo)电化学氮气还原反应(NRR)的经济高效生产。在这次谈判中,我们在环境条件下使用多孔双金属Pd-Ag纳米催化剂在10mAc〜(-2)的电流相和液相电化学电池中使用多孔双金属Pd-Ag纳米催化剂来报告用于氨合成的电化学NRR的发现。虽然气相细胞具有较低的欧姆损耗和更高的能量效率,但液相细胞实现了更高的选择性和游览效率,归因于溶解在含水电解质和水合作用中的浓缩N_2分子的存在。液体细胞对电催化NRR表示显着性能,在-0.6V(Vs.She)的阴极电位下实现45.6μgcm〜(-2)H〜(-1)的NH_3生产速率,电流密度为1.1 mA cm 〜(-2),对应于牵引效率约19.6%,能量效率为9.9%。类似地,气相细胞在-0.07V(rhe)和1.15ma cm〜(-2)的NH_3屈服率为19.4μgcm〜(-2)h〜(-2)和1.15 ma cm〜(-2), 7.9%和能量效率为27.1%。此外,将探索这些杂交等离子体纳米结构的光电催化剂和暗条件下的光电催化活性,并将报告光电流和光伏响应。 Operando表面增强拉曼光谱(SERS)用于鉴定固体 - 液体(电极 - 电解质)界面上的NRR相关的中间物种。除催化剂的改性外,该工作凸显了细胞构型设计和优化的重要性,以实现氨合成的高性能N_2电解。它还证明了使用Operando Sers作为用于解开(照片)电催化现象的强大技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号