首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >(Invited) Near Infrared Nanosensors to Image Brain Neurochemistry
【24h】

(Invited) Near Infrared Nanosensors to Image Brain Neurochemistry

机译:(邀请)近红外纳米传感器到图像脑神经化学

获取原文

摘要

Neurons communicate through chemical neurotransmitter signals that either terminate at the postsynaptic process ("wired transmission") or diffuse beyond the synaptic cleft to modulate the activity of larger neuronal networks ("volume transmission"). Molecules such as dopamine belong to the latter class of neurotransmitters, and have been the pharmacological targets of antidepressants and antipsychotics for decades. Owing to the central role of dopamine over a range of behaviors and psychiatric disorders, real-time imaging of the signal's spatial propagation would constitute a valuable advance in neurochemical imaging. To this end, we present a nanoscale near-infrared fluorescent nanosensor for dopamine and demonstrate its efficacy for imaging dopamine volume transmission in the extracellular space of the brain striatum and prefrontal cortex (Beyene et al. ACS Chem. Neuro. 2017). The sensor is developed from polymers pinned to the surface of single wall carbon nanotubes (SWNT) in which the surface-adsorbed polymer is the recognition moiety and the carbon nanotube the fluorescence transduction element. Excitonic transitions in functionalized SWNT yield up to ΔF/F = 4500% near-infrared fluorescence emission in the presence of dopamine (Beyene et al. Nano Letters 2018). We next demonstrate imaging of evoked dopamine release in acute striatal slices, and show altered dopamine reuptake kinetics when brain tissue is exposed to dopamine receptor agonist and antagonist drugs (Beyene et al. Science Advances 2019). Lastly, we discuss how to evolve synthetic molecular recognition for other neuromodulators of interest, such as serotonin (Jeong et al. Science Advances 2019). We characterize our findings in the context of their utility for high spatial and temporal neuromodulator imaging in the brain, describe nanosensor exciton behavior from a molecular dynamics (MD) perspective, and validate nanosensor for use to elucidate dopaminergic signaling variability with disease or pharmacological perturbations at a synaptic scale.
机译:神经元通过化学神经递质信号进行通信,所述化学神经递质信号在突触突触过程(“有线传输”)或扩散超出突触裂缝以调节较大神经网络的活动(“体积传输”)。多巴胺等分子属于后一类神经递质,几十年来一直是抗抑郁药和抗精神病药的药理靶标。由于多巴胺在一系列行为和精神病疾病中作用,信号的空间繁殖的实时成像将构成神经化学成像中的有价值的进展。为此,我们向多巴胺提出了一种纳米级近红外荧光纳米传感器,并证明其在脑纹状体和前额叶皮质细胞外空间中成像多巴胺体积速度的功效(Beyene等人。ACS Chem。神经。2017)。传感器由固定到单壁碳纳米管(SWNT)表面的聚合物开发,其中表面吸附的聚合物是识别部分和碳纳米管荧光转导元件。在多巴胺存在下,官能化SWNT的激发型转变产生高达ΔF/ f = 4500%的近红外荧光发射(Beyene等人。纳米字母2018)。下一步证明急性纹状切片中诱发多巴胺释放的成像,并且当脑组织暴露于多巴胺受体激动剂和拮抗剂药物(Beyene等人科学推进2019年)时,表现出改变的多巴胺再摄血动力学。最后,我们讨论如何为其他感兴趣的患者(例如血清素(Jeong等人)的综合分子识别。我们在其实用性中表征了我们对大脑中的高空间和颞神经调节剂成像的背景下的研究结果,描述了来自分子动力学(MD)的观点的纳米传感器激子行为,并验证纳米传感器,以阐明与疾病或药理学扰动的多巴胺能信号传导变异性一个突触刻度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号