首页> 外文会议>IAF/IAA Space Life Sciences Symposium;International Astronautical Congress >IMPROVING TRAPPED PROTON MODEL ON THE LOW-EARTH ORBIT WITH CCSRM CUBESATS MEASUREMENTS
【24h】

IMPROVING TRAPPED PROTON MODEL ON THE LOW-EARTH ORBIT WITH CCSRM CUBESATS MEASUREMENTS

机译:用CCSRM CubeSats测量改善低地轨道上的被困质子模型

获取原文

摘要

This project focuses on precise and systematic studies of trapped proton radiation on the low-Earth orbit. Space radiation is one of the main concerns for space flights. On the low-Earth orbit radiation environment is formed with trapped protons, trapped electrons and the galactic cosmic rays. From the perspective of small satellites, the most significant radiation risk is associated with trapped proton radiation. Fluxes of trapped electrons are the most intense, but trapped electrons can be stopped with a relatively thin shielding. The galactic cosmic rays have the highest penetration ability, but their fluxes are very low. The most damage for electronics from galactic cosmic rays is associated with the radiation induced in shielding thus it is more critical for heavy shielded spacecrafts. At the ISS-like orbit current models do not predict proton fluxes with a good angular, time and spatial resolution and do not describe short time fluctuations. Data collected in this mission will be used to improve model description of proton fluxes on the low-Earth orbit. This paper focuses on scientific goals of the Cubesats Constellation for Space Radiation Measurements (CCSRM) mission currently being designed in Skolkovo Institute of Science and Technology. The constellation consists of 12U cubesats will be placed on a 500 km altitude orbit. Each satellite will be equipped with a proton spectrometer, which measures proton flux spectrum in the energy range from 1 MeV to 250 MeV, covering all directions with a 20-degree resolution. Additional silicon detector measures the net deposited dose inside the spacecraft to estimate risk for electronics and shielding efficiency. We present calculation results of the instrument response function of the proton spectrometer done with GEANT4 Monte-Carlo code. We calculated average dose rates inside the cubesat and optimised the design to elongate mission lifetime. Also, we tested an approach of using expected datasets for improving model de
机译:该项目侧重于对低地轨道上被困质子辐射的精确和系统研究。太空辐射是太空飞行的主要问题之一。在低地轨道辐射环境中形成有被捕获的质子,捕获的电子和银宇宙射线。从小卫星的角度来看,最显着的辐射风险与被困的质子辐射有关。被困电子的助熔剂是最强烈的,但是可以用相对薄的屏蔽停止被困的电子。银河系宇宙射线具有最高的渗透能力,但它们的助熔剂非常低。来自银河宇宙射线的电子设备的最大损坏与屏蔽引起的辐射相关,因此对于重型屏蔽的航天器更为关键。在ISS样轨道电流模型上,不要预测具有良好角度,时间和空间分辨率的质子通量,并且没有描述短时间波动。本届任务中收集的数据将用于改善低地轨道上质子通量的模型描述。本文重点介绍了CubeSats Constellation用于空间辐射测量的科学目标(CCSRM)特派团目前正在设计在Skolkovo科学与技术研究所。星座由12U立方体组成的,将放在500公里的高度轨道上。每个卫星将配备质子光谱仪,该质子光谱仪,其测量精能范围内的质子通量光谱从1 meV到250 mev,覆盖20度分辨率的所有方向。额外的硅探测器测量航天器内的净沉积剂量,以估算电子产品和屏蔽效率的风险。我们呈现了用Geant4 Monte-Carlo Code完成的质子光谱仪的仪表响应函数的计算结果。我们计算了立方体内的平均剂量率,并优化了设计的设计,以伸长任务寿命。此外,我们测试了一种使用预期数据集来改善模型的方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号