首页> 外文会议>International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry >(EECR-41)Dynamic prediction of melt temperature for optimised energy input and temperature control in steelmaking
【24h】

(EECR-41)Dynamic prediction of melt temperature for optimised energy input and temperature control in steelmaking

机译:(EECR-41)钢制造中优化能量输入和温度控制的熔融温度的动态预测

获取原文

摘要

Within steelmaking an important control parameter withrelevance for energy consumption is the adjustment ofthe target casting temperature of liquid steel. An optimizedtemperature control is particularly important forsteelmaking plants in which the entire energy buffer tocompensate losses during secondary metallurgy ladletreatment has to be adjusted before tapping of theprimary steelmaking plant or during a consecutive ladlefurnace treatment. To be on the safe side, this energybuffer is often over-dimensioned, so that afterwards acooling scrap addition or extensive bottom or lancestirring is required to lower the melt temperature. Incontrast, a heat becoming too cold for the casting processhas to be reheated at the ladle furnace or evenrecharged at the primary steelmaking facility, which isconnected with a large additional energy input.To avoid an unnecessarily high energy input in the BOFor the LF, which then has to be lowered during ladletreatment, a system for through process prediction oftemperature evolution within the complete steelmakingroute has been developed. It covers the primary steelmakingprocess from BOF resp. EAF tapping via ladletreatment in different secondary metallurgy plants up tothe delivery of the heat to the caster. The effect of thethermal status of the tapping ladle on the evolution ofthe steel temperature loss rate is considered within thedynamic model calculations.On the basis of the dynamic through process temperatureprediction, which is performed for the entire treatmentalready before BOF or EAF tapping, the adjustmentof the BOF tapping temperature resp. the electricalenergy input in the LF is optimised, so that furthertemperature control actions like cooling scrap addition,intensive stirring or chemical heating are minimised.The system for through process temperature control isapplied at the oxygen steelmaking plant of HuttenwerkeKrupp Mannesmann (HKM) in Duisburg, Germany, andthe electric steelmaking plant of Peiner Trager GmbHin Peine, Germany. The average BOF tapping temperatureat HKM was decreased by 10 K, leading to energysavings of about 5 kWh / ton of liquid steel. At PTG theelectrical energy input at the ladle furnace was decreasedby about 2.4 kWh / ton of liquid steel.
机译:在炼钢中,对于能耗的重要控制参数,是调节液钢的目标铸造温度。优化温度控制尤其重要的是,必须在挖掘本身炼钢厂或连续的填充植物治疗期间进行次级冶金Ladleteatment期间的整个能量缓冲液来计算的整个能量缓冲器。为了安全侧,这种能量缓解通常过度尺寸,因此之后,需要除去废料或广泛的底部或延伸率来降低熔体温度。 INCONTRAST,对于在钢包炉中再加热的铸造过程或在主要炼钢设施中进行再加热的热量变冷,这是用大额额外的能量输入进行连接的。要避免在BOFOR中的不必要的高能量输入LF,那么必须在LadleTreatment期间降低,通过了整个钢制造机构内的温度演化的流程进化的一个系统。它涵盖了来自BOF的初级钢制造过程。 EAF通过LadleTreatment在不同的二级冶金植物中攻丝,从而将热量传递给施法者。 TheTping Ladle对钢温损失率的演变的基础上的作用被认为是在历史模型计算中被认为是动态通过工艺温度规范的基础,这是在BOF或EAF攻丝前的整个治疗方法进行的,调整BOF攻丝温度折扣。 LF中的电能输入优化,从而最大限度地优化了LF中的电力输入,如冷却废料,强化搅拌或化学加热的富有灵活性的控制动作。通过德国杜伊斯堡Huttenwerkekrupp Mannesmann(HKM)的氧气炼钢厂逐渐采用工艺温度控制。 ,和培尔司机Gmbhin Peine,德国的电动炼钢厂。平均BOF攻丝温度HKM降低10克,导致液体钢的通电率约为5千瓦时。在PTG下,钢包炉的电能输入的电气能量为约2.4千瓦时/吨液钢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号